9,394 research outputs found

    Space shuttle: Static aerodynamic characteristics and control effectiveness of the GAC H-33 orbiter at Mach numbers from 0.6 to 4.96

    Get PDF
    A .003366 scale model of the Grumman H-33 orbiter was tested in the MSFC 14 inch Trisonic Wind Tunnel. Six-component aerodynamic force and moment data was recorded over a Mach number range of 0.6 to 4.96. Both pitch runs and yaw runs at various constant angles of attack were completed. The basic model configuration was investigated. The effects of a component build-up and of various control deflections were obtained. The elevons were deflected symmetrically and asymmetrically to determine elevator and aileron effectiveness. The rudder was tested both flared and unflared and the effects of deflections were determined in the flared case. The model was tested in pitch in two intervals. The first interval was from 0 to 20 deg. Then an adaptor was set to give the sting an offset angle and 20 to 40 deg angle of attack was obtained. Characteristics in sideslip were determined by varying sideslip angle from -4 deg to 10 deg with angle of attack set at 0 deg, 10 deg, 15 deg, and 30 deg

    Bond distortion effects and electric orders in spiral multiferroic magnets

    Full text link
    We study in this paper bond distortion effect on electric polarization in spiral multiferroic magnets based on cluster and chain models. The bond distortion break inversion symmetry and modify the dd-pp hybridization. Consequently, it will affect electric polarization which can be divided into spin-current part and lattice-mediated part. The spin-current polarization can be written in terms of ei,j×(ei×ej)\vec{e}_{i,j}\times(\vec{e}_{i}\times\vec{e}_{j}) and the lattice-mediated polarization exists only when the M-O-M bond is distorted. The electric polarization for three-atom M-O-M and four-atom M-O2_{2}-M clusters is calculated. We also study possible electric ordering in three kinds of chains made of different clusters. We apply our theory to multiferroics cuprates and find that the results are in agreement with experimental observations.Comment: 14 pages, 11 figure

    The significant impact of education, poverty, and race on Internet-based research participant engagement

    Get PDF
    PURPOSE: Internet-based technologies are increasingly being used for research studies. However, it is not known whether Internet-based approaches will effectively engage participants from diverse racial and socioeconomic backgrounds. METHODS: A total of 967 participants were recruited and offered genetic ancestry results. We evaluated viewing Internet-based genetic ancestry results among participants who expressed high interest in obtaining the results. RESULTS: Of the participants, 64% stated that they were very or extremely interested in their genetic ancestry results. Among interested participants, individuals with a high school diploma (n = 473) viewed their results 19% of the time relative to 4% of the 145 participants without a diploma (P < 0.0001). Similarly, 22% of participants with household income above the federal poverty level (n = 286) viewed their results relative to 10% of the 314 participants living below the federal poverty level (P < 0.0001). Among interested participants both with a high school degree and living above the poverty level, self-identified Caucasians were more likely to view results than self-identified African Americans (P < 0.0001), and females were more likely to view results than males (P = 0.0007). CONCLUSION: In an underserved population, engagement in Internet-based research was low despite high reported interest. This suggests that explicit strategies should be developed to increase diversity in Internet-based research. Genet Med 19 2, 240–243

    Light Rays at Optical Black Holes in Moving Media

    Full text link
    Light experiences a non-uniformly moving medium as an effective gravitational field, endowed with an effective metric tensor g~μν=ημν+(n21)uμuν\tilde{g}^{\mu \nu}=\eta^{\mu \nu}+(n^2-1)u^\mu u^\nu, nn being the refractive index and uμu^\mu the four-velocity of the medium. Leonhardt and Piwnicki [Phys. Rev. A {\bf 60}, 4301 (1999)] argued that a flowing dielectric fluid of this kind can be used to generate an 'optical black hole'. In the Leonhardt-Piwnicki model, only a vortex flow was considered. It was later pointed out by Visser [Phys. Rev. Lett. {\bf 85}, 5252 (2000)] that in order to form a proper optical black hole containing an event horizon, it becomes necessary to add an inward radial velocity component to the vortex flow. In the present paper we undertake this task: we consider a full spiral flow, consisting of a vortex component plus a radially infalling component. Light propagates in such a dielectric medium in a way similar to that occurring around a rotating black hole. We calculate, and show graphically, the effective potential versus the radial distance from the vortex singularity, and show that the spiral flow can always capture light in both a positive, and a negative, inverse impact parameter interval. The existence of a genuine event horizon is found to depend on the strength of the radial flow, relative to the strength of the azimuthal flow. A limitation of our fluid model is that it is nondispersive.Comment: 30 pages, LaTeX, 4 ps figures. Expanded discussion especially in section 6; 5 new references. Version to appear in Phys. Rev.

    Slow light in moving media

    Get PDF
    We review the theory of light propagation in moving media with extremely low group velocity. We intend to clarify the most elementary features of monochromatic slow light in a moving medium and, whenever possible, to give an instructive simplified picture

    Monte Carlo Simulation of HERD Calorimeter

    Full text link
    The High Energy cosmic-Radiation Detection (HERD) facility onboard China's Space Station is planned for operation starting around 2020 for about 10 years. It is designed as a next generation space facility focused on indirect dark matter search, precise cosmic ray spectrum and composition measurements up to the knee energy, and high energy gamma-ray monitoring and survey. The calorimeter plays an essential role in the main scientific objectives of HERD. A 3-D cubic calorimeter filled with high granularity crystals as active material is a very promising choice for the calorimeter. HERD is mainly composed of a 3-D calorimeter (CALO) surrounded by silicon trackers (TK) from all five sides except the bottom. CALO is made of 9261 cubes of LYSO crystals, corresponding to about 55 radiation lengths and 3 nuclear interaction lengths, respectively. Here the simulation results of the performance of CALO with GEANT4 and FLUKA are presented: 1) the total absorption CALO and its absorption depth for precise energy measurements (energy resolution: 1\% for electrons and gamma-rays beyond 100 GeV, 20\% for protons from 100 GeV to 1 PeV); 2) its granularity for particle identification (electron/proton separation power better than 10510^{-5}); 3) the homogenous geometry for detecting particles arriving from every unblocked direction for large effective geometrical factor (>>3 m2sr{\rm m}^{2}{\rm sr} for electron and diffuse gamma-rays, >>2 m2sr {\rm m}^{2}{\rm sr} for cosmic ray nuclei); 4) expected observational results such as gamma-ray line spectrum from dark matter annihilation and spectrum measurement of various cosmic ray chemical components

    Autonomous docking ground demonstration

    Get PDF
    The Autonomous Docking Ground Demonstration is an evaluation of the laser sensor system to support the docking phase (12 ft to contact) when operated in conjunction with the guidance, navigation, and control (GN&C) software. The docking mechanism being used was developed for the Apollo/Soyuz Test Program. This demonstration will be conducted using the 6-DOF Dynamic Test System (DTS). The DTS simulates the Space Station Freedom as the stationary or target vehicle and the Orbiter as the active or chase vehicle. For this demonstration, the laser sensor will be mounted on the target vehicle and the retroflectors will be on the chase vehicle. This arrangement was chosen to prevent potential damage to the laser. The laser sensor system, GN&C, and 6-DOF DTS will be operated closed-loop. Initial conditions to simulate vehicle misalignments, translational and rotational, will be introduced within the constraints of the systems involved

    The Classical Limit of Quantum Mechanics and the Fejer Sum of the Fourier Series Expansion of a Classical Quantity

    Get PDF
    In quantum mechanics, the expectation value of a quantity on a quantum state, provided that the state itself gives in the classical limit a motion of a particle in a definite path, in classical limit goes over to Fourier series form of the classical quantity. In contrast to this widely accepted point of view, a rigorous calculation shows that the expectation value on such a state in classical limit exactly gives the Fej\'{e}r's arithmetic mean of the partial sums of the Fourier series

    Finite-Temperature Scaling of Magnetic Susceptibility and Geometric Phase in the XY Spin Chain

    Full text link
    We study the magnetic susceptibility of 1D quantum XY model, and show that when the temperature approaches zero, the magnetic susceptibility exhibits the finite-temperature scaling behavior. This scaling behavior of the magnetic susceptibility in 1D quantum XY model, due to the quantum-classical mapping, can be easily experimentally tested. Furthermore, the universality in the critical properties of the magnetic susceptibility in quantum XY model is verified. Our study also reveals the close relation between the magnetic susceptibility and the geometric phase in some spin systems, where the quantum phase transitions are driven by an external magnetic field.Comment: 6 pages, 4 figures, get accepted for publication by J. Phys. A: Math. Theo
    corecore