9,381 research outputs found

    Spectrum sensing by cognitive radios at very low SNR

    Full text link
    Spectrum sensing is one of the enabling functionalities for cognitive radio (CR) systems to operate in the spectrum white space. To protect the primary incumbent users from interference, the CR is required to detect incumbent signals at very low signal-to-noise ratio (SNR). In this paper, we present a spectrum sensing technique based on correlating spectra for detection of television (TV) broadcasting signals. The basic strategy is to correlate the periodogram of the received signal with the a priori known spectral features of the primary signal. We show that according to the Neyman-Pearson criterion, this spectral correlation-based sensing technique is asymptotically optimal at very low SNR and with a large sensing time. From the system design perspective, we analyze the effect of the spectral features on the spectrum sensing performance. Through the optimization analysis, we obtain useful insights on how to choose effective spectral features to achieve reliable sensing. Simulation results show that the proposed sensing technique can reliably detect analog and digital TV signals at SNR as low as -20 dB.Comment: IEEE Global Communications Conference 200

    Testing quantum adiabaticity with quench echo

    Full text link
    Adiabaticity of quantum evolution is important in many settings. One example is the adiabatic quantum computation. Nevertheless, up to now, there is no effective method to test the adiabaticity of the evolution when the eigenenergies of the driven Hamiltonian are not known. We propose a simple method to check adiabaticity of a quantum process for an arbitrary quantum system. We further propose a operational method for finding a uniformly adiabatic quench scheme based on Kibble-Zurek mechanism for the case when the initial and the final Hamiltonians are given. This method should help in implementing adiabatic quantum computation.Comment: This is a new version. Some typos in the New Journal of Physics version have been correcte

    Carrier Sense Random Packet CDMA Protocol in Dual-Channel Networks

    Get PDF
    Code resource wastage is caused by the reason that many hopping frequency (FH) sequences are unused, which occurs under the condition that the number of the actual subnets needed for the tactical network is far smaller than the networking capacity of code division net¬working. Dual-channel network (DCN), consisting of one single control channel and multiple data channels, can solve the code resource wastage effectively. To improve the anti-jamming capability of the control channel of DCN, code division multiple access (CDMA) technology was introduced, and a carrier sense random packet (CSRP) CDMA protocol based on random packet CDMA (RP-CDMA) was proposed. In CSRP-CDMA, we provide a carrier sensing random packet mechanism and a packet-segment acknowledgement policy. Furthermore, an analytical model was developed to evaluate the performance of CSRP-CDMA networks. In this model, the impacts of multi-access interference from both inter-clusters and intra-clusters were analyzed, and the mathematical expressions of packet transmission success probability, normalized network throughput and signal interference to noise ratio, were also derived. Analytical and simulation results demonstrate that the normalized network throughput of CSRP-CDMA outperforms traditional RP-CDMA by 10%, which can guarantee the resource utilization efficiency of the control channel in DCNs

    Mesoscopic circuits with charge discreteness:quantum transmission lines

    Full text link
    We propose a quantum Hamiltonian for a transmission line with charge discreteness. The periodic line is composed of an inductance and a capacitance per cell. In every cell the charge operator satisfies a nonlinear equation of motion because of the discreteness of the charge. In the basis of one-energy per site, the spectrum can be calculated explicitly. We consider briefly the incorporation of electrical resistance in the line.Comment: 11 pages. 0 figures. Will be published in Phys.Rev.

    Mixed-state fidelity and quantum criticality at finite temperature

    Get PDF
    We extend to finite temperature the fidelity approach to quantum phase transitions (QPTs). This is done by resorting to the notion of mixed-state fidelity that allows one to compare two density matrices corresponding to two different thermal states. By exploiting the same concept we also propose a finite-temperature generalization of the Loschmidt echo. Explicit analytical expressions of these quantities are given for a class of quasi-free fermionic Hamiltonians. A numerical analysis is performed as well showing that the associated QPTs show their signatures in a finite range of temperatures.Comment: 7 pages, 4 figure

    Formation of regular spatial patterns in ratio-dependent predator-prey model driven by spatial colored-noise

    Full text link
    Results are reported concerning the formation of spatial patterns in the two-species ratio-dependent predator-prey model driven by spatial colored-noise. The results show that there is a critical value with respect to the intensity of spatial noise for this system when the parameters are in the Turing space, above which the regular spatial patterns appear in two dimensions, but under which there are not regular spatial patterns produced. In particular, we investigate in two-dimensional space the formation of regular spatial patterns with the spatial noise added in the side and the center of the simulation domain, respectively.Comment: 4 pages and 3 figure

    Sensitive Chemical Compass Assisted by Quantum Criticality

    Full text link
    The radical-pair-based chemical reaction could be used by birds for the navigation via the geomagnetic direction. An inherent physical mechanism is that the quantum coherent transition from a singlet state to triplet states of the radical pair could response to the weak magnetic field and be sensitive to the direction of such a field and then results in different photopigments in the avian eyes to be sensed. Here, we propose a quantum bionic setup for the ultra-sensitive probe of a weak magnetic field based on the quantum phase transition of the environments of the two electrons in the radical pair. We prove that the yield of the chemical products via the recombination from the singlet state is determined by the Loschmidt echo of the environments with interacting nuclear spins. Thus quantum criticality of environments could enhance the sensitivity of the detection of the weak magnetic field.Comment: 4 pages, 3 figure
    corecore