2 research outputs found

    N-Umsatz, Spurengasemissionen und ProduktivitÀt von Fruchtfolgen zur Biogasproduktion in einer Kalkmarsch Schleswig-Holsteins

    Get PDF
    Aufgrund des bisher wenig untersuchten Agrarlandschaftsraumes als auch neuartiger BiogasgĂ€rreste ist der Effekt der Biogasnutzung auf den Stoffhaushalt von Marschstandorten schwer zu quantifizieren. Auf einem noch nicht entkalkten Marschstandort Nordfries-lands, Schleswig-Holstein, wurden in einem Parzellenversuch mehrjĂ€hrige Untersuchungen zur N-DĂŒngewirksamkeit und Spurengasemissionen (N2O, NH3) bei DĂŒngung mit MineraldĂŒnger (KAS) und BiogasgĂ€rresten durchgefĂŒhrt. Die N-DĂŒnger wurden zur Produktion von Silomais, Weidelgras und GPS-Weizen als Biogassubstrat genutzt. Biogas-gĂ€rreste wurden mit SchleppschlĂ€uchen ausgebracht. Bei Verwendung des MineraldĂŒngers erzielten Maismonokultur, Ackergras sowie eine Fruchtfolge (Mais-Weizen-Welsches Weidelgras) etwa gleich hohe ErtrĂ€ge (ca. 30 t TM ha 1 2a-1). Bei Weizen und Ackergras fĂŒhrte die DĂŒngung mit BiogasgĂ€rresten zu deutlich reduzierten ErtrĂ€gen. NH3-Emissionen lagen aufgrund hoher Windgeschwin- digkeiten höher als in anderen Regionen Schleswig-Holsteins, wobei Ackergras bei weitem die höchsten (80 kg N ha-1 2a-1) und Maismonokultur die geringsten (20 kg N ha-1 2a-1) kumulierten Verluste aufwies. Ohne signifikante Unterschiede zwischen den N-DĂŒngern lagen kumulierte N2O-Emissionen mit 1–5 kg N ha-1 a-1 trotz betrĂ€chtlicher N-Aufwand-mengen und des tonreichen Bodens relativ niedrig

    Assessing nitrous oxide emissions and productivity of cropping systems for biogas production using digestate and mineral fertilisation in a coastal marsh site

    Get PDF
    Significant greenhouse gas emissions during substrate cultivation reduces the potential environmental benefits of biogas production. This study investigates the productivity of different cropping systems and their environmental impact in terms of nitrous oxide (N2O) emissions under the environmental conditions of the coastal marsh regions (Northern Germany) with heavy clay soils, in a 2-year field trial (April 2009-March 2011). Treatments included four cropping systems (perennial ryegrass (Lolium perenne, PR) ley, continuous maize (Zea mays), a rotation (CR1) of spring wheat (Triticum aestivum), Italian ryegrass (Lolium multiflorum, IR) and maize, and a rotation (CR2) of maize, winter wheat and IR; two sources of N (nitrogen) fertilizers (calcium ammonium nitrate, and biogas residue (BR)), and three levels of N fertilizer applications (control, moderate, high). Nitrous oxide emissions were determined for the unfertilized and highly fertilized cropping systems comprising PR ley, CR1 and CR2. Cumulative annual N2O emissions varied across the treatments, ranging from 0.82 to 3.4 kg N2O-N ha−1 year−1. Under high N fertilizer applications, PR ley incurred higher N2O-N losses compared to other tested cropping systems, and IR cover crop caused relatively high N2O-N emissions in a short vegetation period. The study observed wide range of yield-scaled emissions (0.00–5.60 kg N2O-N (Mg DM)−1) for different crops, emphasizing the variability in N2O emissions linked to cropping systems. The N2O-N emission factors for the three cropping systems were found to be low to moderate for all treatments, ranging from 0.03% to 0.53% compared to IPCC default Tier 1 N2O-N EFs. The lower emissions in the study were associated with prolonged high soil moisture conditions (water filled pore space >70%.), indicated by its negative correlation with N2O-N fluxes. Low dry matter and N yield of PR and of the wheat-IR sequence after BR application compared to other crops indicated a low N use efficiency. The estimation of N2O-N emissions based on N surplus was not promising specifically for the coastal study site where high groundwater level and organic matter in the soils were the predominant drivers for N2O-N emissions
    corecore