24 research outputs found

    Developing optofluidic technology through the fusion of microfluidics and optics

    Get PDF
    We describe devices in which optics and fluidics are used synergistically to synthesize novel functionalities. Fluidic replacement or modification leads to reconfigurable optical systems, whereas the implementation of optics through the microfluidic toolkit gives highly compact and integrated devices. We categorize optofluidics according to three broad categories of interactions: fluid-solid interfaces, purely fluidic interfaces and colloidal suspensions. We describe examples of optofluidic devices in each category. ©2006 Nature Publishing Group

    Entropic Tightening of Vibrated Chains

    Full text link
    We investigate experimentally the distribution of configurations of a ring with an elementary topological constraint, a ``figure-8'' twist. Using vibrated granular chains, which permit controlled preparation and direct observation of such a constraint, we show that configurations where one of the loops is tight and the second is large are strongly preferred. This agrees with recent predictions for equilibrium properties of topologically-constrained polymers. However, the dynamics of the tightening process weakly violate detailed balance, a signature of the nonequilibrium nature of this system.Comment: 4 pages, 4 figure

    Knots in Charged Polymers

    Full text link
    The interplay of topological constraints and Coulomb interactions in static and dynamic properties of charged polymers is investigated by numerical simulations and scaling arguments. In the absence of screening, the long-range interaction localizes irreducible topological constraints into tight molecular knots, while composite constraints are factored and separated. Even when the forces are screened, tight knots may survive as local (or even global) equilibria, as long as the overall rigidity of the polymer is dominated by the Coulomb interactions. As entanglements involving tight knots are not easy to eliminate, their presence greatly influences the relaxation times of the system. In particular, we find that tight knots in open polymers are removed by diffusion along the chain, rather than by opening up. The knot diffusion coefficient actually decreases with its charge density, and for highly charged polymers the knot's position appears frozen.Comment: Revtex4, 9 pages, 9 eps figure

    Theory and experiments in polymer physics with single molecules of DNA

    No full text
    SIGLEAvailable from British Library Document Supply Centre- DSC:D181892 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Single-cell dissection of transcriptional heterogeneity in human colon tumors

    No full text
    Cancer is often viewed as a caricature of normal developmental processes, but the extent to which its cellular heterogeneity truly recapitulates multilineage differentiation processes of normal tissues remains unknown. Here we implement single-cell PCR gene-expression analysis to dissect the cellular composition of primary human normal colon and colon cancer epithelia. We show that human colon cancer tissues contain distinct cell populations whose transcriptional identities mirror those of the different cellular lineages of normal colon. By creating monoclonal tumor xenografts from injection of a single (n = 1) cell, we demonstrate that the transcriptional diversity of cancer tissues is largely explained by in vivo multilineage differentiation and not only by clonal genetic heterogeneity. Finally, we show that the different gene-expression programs linked to multilineage differentiation are strongly associated with patient survival. We develop two-gene classifier systems (KRT20 versus CA1, MS4A12, CD177, SLC26A3) that predict clinical outcomes with hazard ratios superior to those of pathological grade and comparable to those of microarray-derived multigene expression signatures
    corecore