61 research outputs found

    The Viscoelastic Properties of Passive Eye Muscle in Primates. III: Force Elicited by Natural Elongations

    Get PDF
    We have recently shown that in monkey passive extraocular muscles the force induced by a stretch does not depend on the entire length history, but to a great extent is only a function of the last elongation applied. This led us to conclude that Fung's quasi-linear viscoelastic (QLV) model, and more general nonlinear models based on a single convolution integral, cannot faithfully mimic passive eye muscles. Here we present additional data about the mechanical properties of passive eye muscles in deeply anesthetized monkeys. We show that, in addition to the aforementioned failures, previous models also grossly overestimate the force exerted by passive eye muscles during smooth elongations similar to those experienced during normal eye movements. Importantly, we also show that the force exerted by a muscle following an elongation is largely independent of the elongation itself, and it is mostly determined by the final muscle length. These additional findings conclusively rule out the use of classical viscoelastic models to mimic the mechanical properties of passive eye muscles. We describe here a new model that extends previous ones using principles derived from research on thixotropic materials. This model is able to account reasonably well for our data, and could thus be incorporated into models of the eye plant

    Ocular-following responses in school-age children

    Get PDF
    : Ocular following eye movements have provided insights into how the visual system of humans and monkeys processes motion. Recently, it has been shown that they also reliably reveal stereoanomalies, and, thus, might have clinical applications. Their translation from research to clinical setting has however been hindered by their small size, which makes them difficult to record, and by a lack of data about their properties in sizable populations. Notably, they have so far only been recorded in adults. We recorded ocular following responses (OFRs)-defined as the change in eye position in the 80-160 ms time window following the motion onset of a large textured stimulus-in 14 school-age children (6 to 13 years old, 9 males and 5 females), under recording conditions that closely mimic a clinical setting. The OFRs were acquired non-invasively by a custom developed high-resolution video-oculography system, described in this study. With the developed system we were able to non-invasively detect OFRs in all children in short recording sessions. Across subjects, we observed a large variability in the magnitude of the movements (by a factor of 4); OFR magnitude was however not correlated with age. A power analysis indicates that even considerably smaller movements could be detected. We conclude that the ocular following system is well developed by age six, and OFRs can be recorded non-invasively in young children in a clinical setting

    The Viscoelastic Properties of Passive Eye Muscle in Primates. II: Testing the Quasi-Linear Theory

    Get PDF
    We have extensively investigated the mechanical properties of passive eye muscles, in vivo, in anesthetized and paralyzed monkeys. The complexity inherent in rheological measurements makes it desirable to present the results in terms of a mathematical model. Because Fung's quasi-linear viscoelastic (QLV) model has been particularly successful in capturing the viscoelastic properties of passive biological tissues, here we analyze this dataset within the framework of Fung's theory

    The Viscoelastic Properties of Passive Eye Muscle in Primates. I: Static Forces and Step Responses

    Get PDF
    The viscoelastic properties of passive eye muscles are prime determinants of the deficits observed following eye muscle paralysis, the root cause of several types of strabismus. Our limited knowledge about such properties is hindering the ability of eye plant models to assist in formulating a patient's diagnosis and prognosis. To investigate these properties we conducted an extensive in vivo study of the mechanics of passive eye muscles in deeply anesthetized and paralyzed monkeys. We describe here the static length-tension relationship and the transient forces elicited by small step-like elongations. We found that the static force increases nonlinearly with length, as previously shown. As expected, an elongation step induces a fast rise in force, followed by a prolonged decay. The time course of the decay is however considerably more complex than previously thought, indicating the presence of several relaxation processes, with time constants ranging from 1 ms to at least 40 s. The mechanical properties of passive eye muscles are thus similar to those of many other biological passive tissues. Eye plant models, which for lack of data had to rely on (erroneous) assumptions, will have to be updated to incorporate these properties

    FROM VISION TO ACTION: A NEUROMIMETIC MODEL OF THE SACCADIC SYSTEM

    Get PDF
    1999/2000XIII Ciclo1970Versione digitalizzata della tesi di dottorato cartacea

    Combining 1-D components to extract pattern information: It is about more than component similarity

    No full text

    Stable dynamics of spikes in solutions to a system of activator-inhibitor type

    No full text
    <p>Data (black) and force predicted by the AQLV model (green). The values for the parameters of the model at each step length were derived from the parameters of the generalized QLV model described above. A cubic spline interpolation (<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0006480#pone-0006480-g007" target="_blank">Fig. 7C</a>) was then used to determine the value of the parameters at other lengths. Data for the superior rectus in m3. Each step has been offset in time for clarity. Note that in a logarithmic plot to carry out this operation without deforming the shape the time axis must be compressed, not shifted.</p

    Parameters for the <i>k<sub>i</sub>(L)</i> functions in m3LR.

    No full text
    <p>Parameters for the <i>k<sub>i</sub>(L)</i> functions in m3LR.</p
    • …
    corecore