124 research outputs found

    Ab initio calculations of reactions with light nuclei

    Full text link
    An {\em ab initio} (i.e., from first principles) theoretical framework capable of providing a unified description of the structure and low-energy reaction properties of light nuclei is desirable to further our understanding of the fundamental interactions among nucleons, and provide accurate predictions of crucial reaction rates for nuclear astrophysics, fusion-energy research, and other applications. In this contribution we review {\em ab initio} calculations for nucleon and deuterium scattering on light nuclei starting from chiral two- and three-body Hamiltonians, obtained within the framework of the {\em ab initio} no-core shell model with continuum. This is a unified approach to nuclear bound and scattering states, in which square-integrable energy eigenstates of the AA-nucleon system are coupled to (A−a)+a(A-a)+a target-plus-projectile wave functions in the spirit of the resonating group method to obtain an efficient description of the many-body nuclear dynamics both at short and medium distances and at long ranges.Comment: 9 pages, 5 figures, proceedings of the 21st International Conference on Few-Body Problems in Physic

    Ab initio calculation of the 4He(e,e'd)d reaction

    Full text link
    The two-body knock-out reaction 4He(e,e'd)d is calculated at various momentum transfers. The full four-nucleon dynamics is taken into account microscopically both in the initial and the final states. As NN interaction the central MT-I/III potential is used. The calculation shows a strong reduction of the coincidence cross section due to the final state interaction. Nonetheless the theoretical results exhibit a considerable overestimation of the experimental cross section at lower momentum transfer. Comparisons with other, less complete, calculations suggest that consideration of a more realistic ground state might not be sufficient for a good agreement with experiment, rather a more realistic final state interaction could play an essential role.Comment: 14 pages, 5 figure

    Electric Dipole Transitions Within The Ab initio No-Core Shell Model With Continuum

    Get PDF

    Light nuclei from chiral EFT interactions

    Get PDF
    Recent developments in nuclear theory allow us to make a connection between quantum chromodynamics (QCD) and low-energy nuclear physics. First, chiral effective field theory (chiEFT) provides a natural hierarchy to define two-nucleon (NN), three-nucleon (NNN), and even four-nucleon interactions. Second, ab initio methods have been developed capable to test these interactions for light nuclei. In this contribution, we discuss ab initio no-core shell model (NCSM) calculations for s-shell and p-shell nuclei with NN and NNN interactions derived within chiEFT.Comment: 6 pages, 6 figures, proceedings of the 20th European Conference on Few-Body Problems in Physics (EFB20

    The ab initio no-core shell model

    Full text link
    This contribution reviews a number of applications of the ab initio no-core shell model (NCSM) within nuclear physics and beyond. We will highlight a nuclear-structure study of the A = 12 isobar using a chiral NN + 3NF interaction. In the spirit of this workshop we will also mention the new development of the NCSM formalism to describe open channels and to approach the problem of nuclear reactions. Finally, we will illustrate the universality of the many-body problem by presenting the recent adaptation of the NCSM effective-interaction approach to study the many-boson problem in an external trapping potential with short-range interactions.Comment: 4 pages. Article based on the presentation by C. Forssen at the Fifth Workshop on Critical Stability, Erice, Sicily. Published in Few-Body System
    • …
    corecore