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Application of chiral two- and three-nucleon
interactions to the 4He photo-disintegration

Sofia Quaglioni and Petr Navrátil

Lawrence Livermore National Laboratory, L-414, P.O. Box 808, Livermore, CA 94551, USA

Abstract. We report on anab initio calculation of the4He total photo-absorption cross section
using two- and three-nucleon interactions based upon chiral effective field theory. The microscopic
treatment of the continuum problem is achieved using the Lorentz integral transform method,
applied within the no-core shell model approach.

PACS: 25.20.Dc; 21.30.-x; 21.60.Cs, 27.10.+h

INTRODUCTION

Chiral effective filed theory (χEFT) [1, 2] represents our best opportunity to reach a
consistent picture of the interaction among nucleons, that is based on the underlying
and fundamental theory of quantum chromo-dynamics (QCD). Indeed,χEFT may be
thought as an effective theory for QCD in the low energy regime relevant for describing
the properties of nuclei. In the framework ofχEFT the nucleon-nucleon (NN) interac-
tion is predicted at the leading order, together with a three-nucleon (NNN) interaction
at the next-to-next-to-leading order or N2LO [2, 3, 4], and even a four-nucleon (NNNN)
interaction at the fourth order (N3LO) [5]. The details of QCD are contained in param-
eters, the so-called low-energy constants (LECs), that are not fixed by the symmetry,
but can be constrained by experiment. Therefore, it is of the utmost importance to apply
χEFT to nuclei in an ab initio framework.

We performed anab initio calculation [6] of the4He total photo absorption cross
section in unretarded dipole approximation, using the high quality NN potential at the
fourth order (N3LO) in the χEFT expansion of Ref. [7], and the NNN interaction at
the highest order presently available (N2LO) [3, 5]. The two low-energy constants that
parameterize the short-range NNN interaction were selected as discussed in Ref. [8].
The microscopic treatment of the continuum problem was achieved by means of the
Lorentz integral transform (LIT) method [9], applied within theab initio no-core shell
model (NCSM) approach [10].

THE AB INITIO NO-CORE SHELL MODEL

The NCSM is a technique for the solution of theA-nucleon bound-state problem. Start-
ing from an Hamiltonian containing realistic NN and NNN forces (both coordinate-
and momentum-space interactions can be equally handled), the Schrrödinger equation
is solved by expanding the wave functions in terms of a complete set ofA-nucleon



harmonic oscillator (HO) basis states up to a maximum excitationNmax̄hΩ above the
minimum energy configuration, withΩ the HO frequency. Both Jacobi relative coordi-
nates or Cartesian single-particle coordinates can be used. Indeed, in a completeNmax̄hΩ
space translational invariance is preserved even in the Slater-determinant basis. The con-
vergence to the exact result with increasingNmax is accelerated by the use of an effective
interaction tailored to the model-space truncation. The effective interaction is obtained
using a unitary transformation in an−body cluster approximation, wheren is typically
2 or 3 [11].

TOTAL PHOTO-ABSORPTION CROSS SECTION VIA THE
LORENTZ INTEGRAL TRANSFORM METHOD

In the long wave-length approximation, the total photo-absorption cross section

σγ(ω) = 4π2 e2

h̄c
ωR(ω) , (1)

is proportional to the inclusive dipole response function:

R(ω) =
∫

dΨ f
∣∣〈Ψ f

∣∣ D̂ |Ψ0〉
∣∣2δ (Ef −E0−ω) . (2)

This is the sum of all the transitions from the ground state|Ψ0〉 to the various allowed
final states|Ψ f 〉 induced by the dipole operator:

D̂ =

√
4π
3

A

∑
i=1

τz
i

2
r iY10(r̂ i) . (3)

In the above equations ground- and final-state energies are denoted byE0 and Ef ,
respectively, whereasτz

i and~r i = r i r̂ i represent the isospin third component and center
of mass frame coordinate of theith nucleon. The direct calculation of such response
function is extremely difficult, especially for energies beyond the three-body breakup
threshold. However, it is possible to obtain the response function by following a small
detour, the LIT method [12].

While in conventional approaches one usually starts from Eq. (2), in the LIT method
one obtainsR(ω) after the inversion of its integral transform with a Lorentzian kernel

L(σR,σI ) =
∫

dω
R(ω)

(ω−σR)2 +σ2
I

= 〈Ψ̃|Ψ̃〉 . (4)

Indeed, in order to calculate such a transform it is sufficient to solve the in-homogeneous
“Schrödinger-like” equation

(H−E0−σR+ iσI )|Ψ̃〉= D̂|Ψ0〉. (5)

Because of the presence of an imaginary partσI in Eq. (5) and the fact that the right-
hand side of this same equation is localized (

〈
Ψ0

∣∣D̂†D̂
∣∣Ψ0

〉
< ∞), one has an asymptotic
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FIGURE 1. The4He ground-state (a) energy, (b) point-proton root-mean-square radius〈r2
p〉1/2, and (c)

total dipole strength〈Ψ0|D̂†D̂|Ψ0〉 as functions of the model-space truncationNmax. Present results with
χEFT interactions for̄hΩ = 22and28MeV.

boundary condition similar to a bound state. Thus, one can apply bound-state techniques
for its solution, and, in particular, expansions over basis sets of localized functions
such the NCSM basis. Moreover, the solution of Eq. (5) is unique. Once calculated
〈Ψ̃|Ψ̃〉 the response function can be obtained by numerical inversion of the integral
equation (4) [13]. During this procedure all the final-state interaction of the problem is
fully taken into account.

RESULTS

We start by discussing our results for the ground state of theα particle, which enters the
driving term of the LIT equation (5). In Fig. 1 we show the convergence patterns for three
different ground-state observables, calculated with and without inclusion of the NNN
terms of the interaction: binding energy, point-proton radius and total dipole strength.
For all of them we obtain very similar and smooth convergence patterns, using effective
interactions at the three-body cluster level. In particular, already forNmax= 18 we find
independence from both model space and harmonic oscillator parameter. At the ground-
state level, the inclusion of the NNN force affects mostly the energy, providing 3.21 MeV
additional binding, while the point-proton radius undergoes only a weak reduction. The
total dipole strength follows the same pattern as the radius. Indeed, these two observables
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FIGURE 2. The 4He total photo-absorption cross section as a function of the excitation energyω.
Present results withχEFT interactions, and in particular: (upper panel) convergence pattern of the
NN+NNN calculation with respect to the model-space truncationNmax for h̄Ω = 28 Me; (lower panel)
frequency dependence of the best (Nmax= 18/19) results with and without inclusion of the NNN force.

are correlated [14]:

〈Ψ0|D̂†D̂|Ψ0〉 ' ZN
3(A−1)

〈r2
p〉 . (6)

This expression, which is exact for deuteron and triton, and for spatially symmetric
systems, is violated of about 9% for the4He calculated both with and without NNN
interactions terms.

By applying the LIT method we have obtained the4He total photo-absorption cross
section shown in Fig. 2. Also for this observable we find a stable and accurate con-
vergence thanks to the use of three-body effective interactions. From the bottom panel
of the figure we also see that for the biggest model space used,Nmax= 18/19, the de-
pendence on the HO frequency is weak. The inclusion of the NNN interaction terms
induces a suppression of the peak and an enhancement of the tail of the cross section. In
particular, the reduction of the low-energy cross section is related, through the inverse
energy-weighted sum rule to the the reduction found for the dipole strength

∫ ∞

Eth

σγ(ω)
ω

dω = 4π2 e2

h̄c
〈Ψ0|D̂†D̂|Ψ0〉 . (7)
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FIGURE 3. The 4He photo-absorption cross section as a function of the excitation energyω. Present
results withχEFT interactions compared to the most recent experiments [15, 16, 17].

Our final results, presented in Fig. 3 together with the most recent experiments,
show a peak around the excitation energy ofω = 27.8 MeV, with a pick height mildly
sensitive to the NNN force. The experimental situation in the near-threshold region
is controversial: two direct measurements performed using quasi-mono-energetic pho-
tons [15, 16] show discrepancies up to a factor of two on the absolute height of the
cross-section peak. We find an overall good agreement with the photo-disintegration
data from bremsstrahlung photons of Nilssonet al. [16], while we reach only the last of
the experimental points of Ref. [15]. In particular, the confused experimental situation
drawn by these two data sets does not allow to asses the role of the NNN force effect.
Recently Nakayamaet al. performed an indirect measurements of theα-particle total
photo-absorption cross section [17] by observing its analog via the4He(7Li,7Be) reac-
tion at an incident energy of455 MeV and at forward scattering angles. Although the
uncertainty on this extracted absolute cross section is 20% or more, the inclusion of the
NNN terms of the interaction appear to improve the agreement of the calculated cross
section with the latter indirect measurement.
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