236 research outputs found

    Numerical investigation on the seismic performance of a RC framed building equipped with a novel Prestressed LEad Damper with Straight Shaft

    Get PDF
    This study aims at assessing the use of a novel damper, which is called the Prestressed LEad Damper with Straight Shaft (or PSLED), for the seismic rehabilitation of RC framed buildings. This device provides high energy dissipation by the friction activated between a lead core and a shaft and achieves a high specific output force by preloading the lead during the assembly. In order to show the effectiveness of the PS-LED device for the retrofit of existing buildings, a RC structure designed according to past codes that ignored seismic actions is retrofitted with the PS-LED system considering two different damage targets: (i) in the first case, the structure is retrofitted in order to behave elastically under the design earthquake; (ii) in the second case, a partially dissipative behavior of the structure is conceived, with activation of plastic hinges, and limited and reparable damage. In order to assess the suitability of the design procedure, non-linear static analyses are performed on the upgraded building, showing a satisfactory agreement between the seismic performance and the design target. Non-linear dynamic analyses are further carried out considering a suite of bidirectional artificial ground motions with response spectra matching on average the target spectrum according to the Italian Building Code for the life-safety limit state. Finally, a comparison is performed between the performances of the building retrofitted with the PS-LED device and the building retrofitted with a conventional steel hysteretic damper (SHD), demonstrating that the PS-LED, thanks to its superior damping capacity, limits the increase in internal forces that usually affects frames equipped with SHDs, reducing the need of local strengthening of the columns and foundations and consequently the total cost of the seismic rehabilitation

    SAFOTEB project: towards new approaches for the reliability assessment of existing prestressed bridge

    Get PDF
    This paper presents the structure of new collaborative research project entitled SAFOTEB “A reviewed SAfety FOrmat for structural reliability assessment of post-TEnsioned concrete Bridges”. The research aims at assessing the reliability of the current safety format and developingspecific suggestions for existing concrete bridges with post-tensioned cables. To date, no European code provides specific guidance for such a purpose. Indeed, the status of conservation and possible de-fects of the cables may be hidden, enlarging the uncertainties in the structural assessment of such constructions. The basic steps of the research are: (i) defini-tion of the probabilistic models for the main variables concerning the assessment of existing post-tensioned prestressed concrete bridges; (ii) reliability assessment and calibration of updated safety coefficients for the partial factors method; (iii) evaluation of the residual life and model updating through real-time continuous monitoring systems. The full procedure will be applied on existing casestudy structures used as benchmarks. The project is funded by FABRE, an Italian re-search consortium composedbyuniversities and research institutions aimed at the evaluation and monitoring of bridges, viaducts, tunnels and other structures

    3D numerical characterization of a dissipative connection system for retrofit of prefabricated existing RC sheds

    Get PDF
    Prefabricated industrial sheds featured a high seismic vulnerability during the 2012 Emilia earthquake (Italy). The buildings typically exhibited a rigid collapse mechanism that was a consequence of the loss of support between columns, beams and roof elements. The study presents a numerical characterization of a novel dissipative connection system (DCS) designed to improve the seismic performance of industrial sheds. The device, which is placed on the top of the columns, exploits the movement of a rigid body on a sloped surface to provide horizontal stiffness and control the lateral displacement of the beam. A 3D finite element model of the prototype is formulated in Abaqus and used to switch the backbone curve from the scaled model to the full-scale device. A parametric study is conducted to evaluate the influence of the slope of the contact surface and the coefficient of friction on the output force of the system. In the second part of the study, non-linear dynamic analyses are performed on a finite element model of a portal frame implementing, at beam-column joints, either the DCS or a pure friction connection. The results highlight the effectiveness of the DCS in controlling beam-to-column displacements, reducing shear forces on the top of columns, and limiting residual displacements that can accrue during ground motion sequence

    Assessment of bridge Post‐Tensioning systems using non‐destructive (ND) inspection methods

    Get PDF
    Reinforced concrete bridges with post-tensioned cables are particularly critical structures, as the degradation of the tendons is not fully detectable through conventional investigation methods and/or through visual inspections, due to the intrinsic nature of the structural typology. After shortly reviewing the main applications of current non-destructive (ND) methods available for investigating the deterioration of tendons and grout, the paper presents a simple procedure to rank these methods through a series of metrics formulated to evaluate the various technologies under four different aspects: accuracy of measurement, ease of use, cost, impact on the operation of the bridge. The procedure has the aim of providing bridge owners with a decision tool which can assist in the selection of the optimal ND technology available to detect a particular strand or grout defec

    ASSESSMENT OF THE SHEAR PROPERTIES OF HDRBS UNDER DIFFERENT COMPRESSION LEVELS

    Get PDF
    Despite it is well known that the shear properties of High Damping Rubber Bearings (HDRBs) are affected by the instantaneous compression load developed during the seismic ground motion, only permissible variations of their design properties with frequency, temperature and ageing are prescribed in the standards while the influence of the compression level is usually disregarded. Within this framework, this research addresses this drawback through both experimental and numerical investigations. In the first part of the study, small scale laminated isolators are tested on a custom biaxial machine in order to assess the secant modulus, and damping factor of the elastomeric compound under different compression levels. In the second part, the same phenomenon is investigated through cyclic shear tests on full scale HDRBs under three different levels of axial load. In the last part, a 3D finite element model of the isolator is eventually formulated in Abaqus FEM software. The mechanical response of the elastomer is simulated by means of a hyperelastic strain energy function combined with a relaxation function. The experimental results highlight the substantial influence of the axial load on the damping capacity of the elastomer, while the shear modulus is less affected. The numerical analyses demonstrate that the vertical – horizontal coupled response of HDRBs can be accurately predicted, within the proposed formulation, with constitutive parameters estimated from simple uniaxial tests

    Design and experimental assessment of a novel damper with high endurance to seismic loads

    Get PDF
    The study presents the design and the experimental characterization of a new energy dissipation device aimed at providing improved resistance to repeated seismic loads. Differently from conventional steel hysteretic dampers, which dissipate energy by yielding of a mild steel core and are noted to suffer low-cycle fatigue, the new damper provides energy dissipation by the friction that is activated between a moving shaft and a lead core prestressed within a tube. The prestress level is controlled during the assembling process, allowing to adjust the axial strength of the damper. Thanks to the ability of lead to restore its properties by static recrystallization taking place immediately after deformation, repeated cycles of loading do not produce damages that may accrue and eventually lead to failure of the device. Moreover, prestressing of the lead core allows to achieve high specific strength (i.e., high force to volume ratio), thereby providing low dimensions which help to reduce the architectural invasiveness. Prototypes of the damper were subjected to the test procedure established in the European standard EN 15129 for Displacement Dependent Devices, fulfilling the relevant requirements. The damper provides a robust and stable response over repeated cycles, characterized by essentially rectangular hysteresis loops with an equivalent viscous damping ratio Οeff of about 55%. Moreover, it shows low sensitivity of mechanical properties on the loading rate and the ability to withstand multiple cycles of motion at the design earthquake displacement without deterioration of performance, demonstrating maintenance-free operation in presence of repeated ground shakes. Its ability to survive several strong motions without being damaged, and its high damping capability coupled to a compact design and low manufacturing cost, are the distinctive features that make it suitable for social housing

    A Scalable Architecture for Incremental Specification and Maintenance of Procedural and Declarative Clinical Decision-Support Knowledge

    Get PDF
    Clinical guidelines have been shown to improve the quality of medical care and to reduce its costs. However, most guidelines exist in a free-text representation and, without automation, are not sufficiently accessible to clinicians at the point of care. A prerequisite for automated guideline application is a machine-comprehensible representation of the guidelines. In this study, we designed and implemented a scalable architecture to support medical experts and knowledge engineers in specifying and maintaining the procedural and declarative aspects of clinical guideline knowledge, resulting in a machine comprehensible representation. The new framework significantly extends our previous work on the Digital electronic Guidelines Library (DeGeL) The current study designed and implemented a graphical framework for specification of declarative and procedural clinical knowledge, Gesher. We performed three different experiments to evaluate the functionality and usability of the major aspects of the new framework: Specification of procedural clinical knowledge, specification of declarative clinical knowledge, and exploration of a given clinical guideline. The subjects included clinicians and knowledge engineers (overall, 27 participants). The evaluations indicated high levels of completeness and correctness of the guideline specification process by both the clinicians and the knowledge engineers, although the best results, in the case of declarative-knowledge specification, were achieved by teams including a clinician and a knowledge engineer. The usability scores were high as well, although the clinicians’ assessment was significantly lower than the assessment of the knowledge engineers

    Linear viscoelasticity - bone volume fraction relationships of bovine trabecular bone

    Get PDF
    Trabecular bone has been previously recognized as time-dependent (viscoelastic) material, but the relationships of its viscoelastic behaviour with bone volume fraction (BV/TV) have not been investigated so far. Therefore, the aim of the present study was to quantify the time-dependent viscoelastic behaviour of trabecular bone and relate it to BV/TV. Uniaxial compressive creep experiments were performed on cylindrical bovine trabecular bone samples ([Formula: see text] ) at loads corresponding to physiological strain level of 2000 [Formula: see text] . We assumed that the bone behaves in a linear viscoelastic manner at this low strain level and the corresponding linear viscoelastic parameters were estimated by fitting a generalized Kelvin–Voigt rheological model to the experimental creep strain response. Strong and significant power law relationships ([Formula: see text] ) were found between time-dependent creep compliance function and BV/TV of the bone. These BV/TV-based material properties can be used in finite element models involving trabecular bone to predict time-dependent response. For users’ convenience, the creep compliance functions were also converted to relaxation functions by using numerical interconversion methods and similar power law relationships were reported between time-dependent relaxation modulus function and BV/TV
    • 

    corecore