280 research outputs found

    The role of metal ions in the uptake of aspartate aminotransferase and malate dehydrogenase into isolated rat liver mitochondria in vitro

    Get PDF
    AbstractTo gain further insight into the mitochondrial receptor area which allows selective uptake of both purified aspartate aminotransferase and malate dehydrogenase into mitochondria, the inhibition of metal complexing agents such as bathophenanthroline and tiron on the uptake of both enzymes has been investigated. In view of the nature of the inhibition found, we propose the existence of metal ion(s) at or near the aspartate aminotransferase, but far from the malate dehydrogenase binding site

    Use of complementary and alternative medicine (CAM) in cancer patients. An italian multicenter survey

    Get PDF
    INTRODUCTION: Complementary and Alternative Medicine (CAM) include a wide range of products (herbs, vitamins, minerals, and probiotics) and medical practices, developed outside of the mainstream Western medicine. Patients with cancer are more likely to resort to CAM first or then in their disease history; the potential side effects as well as the costs of such practices are largely underestimated. PATIENTS AND METHOD: We conducted a descriptive survey in five Italian hospitals involving 468 patients with different malignancies. The survey consisted of a forty-two question questionnaire, patients were eligible if they were Italian-speaking and receiving an anticancer treatment at the time of the survey or had received an anticancer treatment no more than three years before participating in the survey. RESULTS: Of our patients, 48.9% said they use or have recently used CAM. The univariate analysis showed that female gender, high education, receiving treatment in a highly specialized institute and receiving chemotherapy are associated with CAM use; at the multivariate analysis high education (Odds Ratio, (OR): 1.96 95% Confidence Interval, CI, 1.27-3.05) and receiving treatment in a specialized cancer center (OR: 2.75 95% CI, 1.53-4.94) were confirmed as risk factors for CAM use. CONCLUSION: Roughly half of our patients receiving treatment for cancer use CAM. It is necessary that health professional explore the use of CAM with their cancer patients, educate them about potentially beneficial therapies in light of the limited available evidence of effectiveness, and work towards an integrated model of health-care provision

    A pilot study of the role of corn dextrin and milk peptides supplementation on faecal microbiota in healthy adults

    Get PDF
    The gastrointestinal microbiota has an important role in human health. Dietary interventions are of great interest to modulate the composition and metabolic functions of the gut microbial communities and to improve health, and prevent or treat diseases. Consumption of prebiotics is one dietary strategy for beneficial manipulation of the gut microbiota, because it allows increasing the fibre intake, especially in people with western dietary habits, who do not take the recommended daily amount of fiber. Interestingly, milk peptides can also positively affect the beneficial gut microorganisms. The present work is a pilot study aimed to investigate the effect of a prebiotic supplementation on composition and metabolic activity of microorganisms living in the human gut. In this trial, 12 healthy subjects received 10g/die of supplement Biotransit\uae, composed by corn derived dextrin and milk peptides, produced and marketed in Italy by Depofarma (Italy), for 4 weeks with a 2 weeks washout. Outcome measures were assessed at four time points (before the supplementation T0-1, T0-2, at the end of intervention, T30 and after washout, T45), including gut microbiota profiling by 16S rRNA gene sequencing and intestinal functional metabolism measuring faecal Short Chain Fatty Acid concentrations (SCFAs). The effects of the Biotransit supplementation on bifidobacteria were also assessed with culture dependent techniques. Gut microbiota analysis revealed that Biotransit\uae supplementation after 30 days did not exert effects on the overall gut microbiota structure. Although no significant differences on alpha diversity were obtained, we observed an increase of diversity after 30 days of treatment. Beta diversity analysis, calculated on Bray-Curtis distances revealed significant differences comparing T0 vs T45 and T30 vs T45. Interestingly, at T45, we found an enrichment of Porphyromonadaceae. Biotransit\uae induced quantitative changes in cultivable bifidobacteria with increased amount at T45, even if the total number of species has not been influenced. Biotransit\uae supplementation is also associated to an increase total SCFAs concentration in T30 and T45, in particular related to acetate, propionate and butyrate (p < 0.05). Future study will be aimed to follow the time course of the persistence of this effect after the end of treatment

    Gut microbiota composition in himalayan and andean populations and its relationship with diet, lifestyle and adaptation to the high-altitude environment

    Get PDF
    Human populations living at high altitude evolved a number of biological adjustments to cope with a challenging environment characterised especially by reduced oxygen availability and limited nutritional resources. This condition may also affect their gut microbiota composition. Here, we explored the impact of exposure to such selective pressures on human gut microbiota by considering different ethnic groups living at variable degrees of altitude: the high-altitude Sherpa and low-altitude Tamang populations from Nepal, the high-altitude Aymara population from Bolivia, as well as a low-altitude cohort of European ancestry, used as control. We thus observed microbial profiles common to the Sherpa and Aymara, but absent in the low-altitude cohorts, which may contribute to the achievement of adaptation to high-altitude lifestyle and nutritional conditions. The collected evidences suggest that microbial signatures associated to these rural populations may enhance metabolic functions able to supply essential compounds useful for the host to cope with high altitude-related physiological changes and energy demand. Therefore, these results add another valuable piece of the puzzle to the understanding of the beneficial effects of symbiosis between microbes and their human host even from an evolutionary perspective

    Is plant mitochondrial RNA editing a source of phylogenetic incongruence? An answer from in silico and in vivo data sets

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In plant mitochondria, the post-transcriptional RNA editing process converts C to U at a number of specific sites of the mRNA sequence and usually restores phylogenetically conserved codons and the encoded amino acid residues. Sites undergoing RNA editing evolve at a higher rate than sites not modified by the process. As a result, editing sites strongly affect the evolution of plant mitochondrial genomes, representing an important source of sequence variability and potentially informative characters.</p> <p>To date no clear and convincing evidence has established whether or not editing sites really affect the topology of reconstructed phylogenetic trees. For this reason, we investigated here the effect of RNA editing on the tree building process of twenty different plant mitochondrial gene sequences and by means of computer simulations.</p> <p>Results</p> <p>Based on our simulation study we suggest that the editing ‘noise’ in tree topology inference is mainly manifested at the cDNA level. In particular, editing sites tend to confuse tree topologies when artificial genomic and cDNA sequences are generated shorter than 500 bp and with an editing percentage higher than 5.0%. Similar results have been also obtained with genuine plant mitochondrial genes. In this latter instance, indeed, the topology incongruence increases when the editing percentage goes up from about 3.0 to 14.0%. However, when the average gene length is higher than 1,000 bp (<it>rps3</it>, <it>matR</it> and <it>atp1</it>) no differences in the comparison between inferred genomic and cDNA topologies could be detected.</p> <p>Conclusions</p> <p>Our findings by the here reported <it>in silico</it> and <it>in vivo</it> computer simulation system seem to strongly suggest that editing sites contribute in the generation of misleading phylogenetic trees if the analyzed mitochondrial gene sequence is highly edited (higher than 3.0%) and reduced in length (shorter than 500 bp).</p> <p>In the current lack of direct experimental evidence the results presented here encourage, thus, the use of genomic mitochondrial rather than cDNA sequences for reconstructing phylogenetic events in land plants.</p
    corecore