90 research outputs found
The Arabidopsis thaliana mobilome and its impact at the species level
Transposable elements (TEs) are powerful motors of genome evolution yet a comprehensive assessment of recent transposition activity at the species level is lacking for most organisms. Here, using genome sequencing data for 211 Arabidopsis thaliana accessions taken from across the globe, we identify thousands of recent transposition events involving half of the 326 TE families annotated in this plant species. We further show that the composition and activity of the 'mobilome' vary extensively between accessions in relation to climate and genetic factors. Moreover, TEs insert equally throughout the genome and are rapidly purged by natural selection from gene-rich regions because they frequently affect genes, in multiple ways. Remarkably, loci controlling adaptive responses to the environment are the most frequent transposition targets observed. These findings demonstrate the pervasive, species-wide impact that a rich mobilome can have and the importance of transposition as a recurrent generator of large-effect alleles
A transcriptomic, metabolomic and cellular approach to the physiological adaptation of tomato fruit to high temperature
Harnessing anthocyanin-rich fruit: a visible reporter for tracing virus-induced gene silencing in pepper fruit
BACKGROUND: Virus-induced gene silencing (VIGS) has become a powerful tool for post-genomic technology in plant species. This is important, especially in select plants, such as the pepper plant, that are recalcitrant to Agrobacterium-mediated transformation. Although VIGS in plants has been widely employed as a powerful tool for functional genomics, scattering phenotypic effects by uneven gene silencing has been implemented in order to overcome challenges in experiments with fruit tissues. RESULTS: We improved the VIGS system based on the tobacco rattle virus (TRV) containing the An2 MYB transcription factor, which is the genetic determinant of purple colored- or anthocyanin-rich pepper. Silencing of endogenous An2 in the anthocyanin-rich pepper with the modified TRV vector for ligation-independent cloning (LIC) lacked purple pigment in its leaves, flowers, and fruits. Infection with TRV–LIC containing a tandem construct of An2 and phytoene desaturase (PDS) resulted in a typical photobleaching event in leaves without the purple pigment, whereas silencing of PDS led to the presence of photobleached and purple-colored leaves. Cosilencing of endogenous An2 and capsaicin synthase in fruits resulted in decreased levels of capsaicin and dihydrocapsaicin as assessed by high performance liquid chromatography analysis coupled with the absence of the purple pigment in fruits. CONCLUSIONS: VIGS with tandem constructs harboring An2 as a visible reporter in anthocyanin-rich pepper plants can facilitate the application of functional genomics in the study of metabolic pathways and fruit biology
The genome-wide dynamics of purging during selfing in maize
Self-fertilization (also known as selfing) is an important reproductive strategy in plants and a widely applied tool for plant genetics and plant breeding. Selfing can lead to inbreeding depression by uncovering recessive deleterious variants, unless these variants are purged by selection. Here we investigated the dynamics of purging in a set of eleven maize lines that were selfed for six generations. We show that heterozygous, putatively deleterious single nucleotide polymorphisms are preferentially lost from the genome during selfing. Deleterious single nucleotide polymorphisms were lost more rapidly in regions of high recombination, presumably because recombination increases the efficacy of selection by uncoupling linked variants. Overall, heterozygosity decreased more slowly than expected, by an estimated 35% to 40% per generation instead of the expected 50%, perhaps reflecting pervasive associative overdominance. Finally, three lines exhibited marked decreases in genome size due to the purging of transposable elements. Genome loss was more likely to occur for lineages that began with larger genomes with more transposable elements and chromosomal knobs. These three lines purged an average of 398 Mb from their genomes, an amount equivalent to three Arabidopsis thaliana genomes per lineage, in only a few generations
Epigenomic and functional analyses reveal roles of epialleles in the loss of photoperiod sensitivity during domestication of allotetraploid cottons
Abstract Background Polyploidy is a pervasive evolutionary feature of all flowering plants and some animals, leading to genetic and epigenetic changes that affect gene expression and morphology. DNA methylation changes can produce meiotically stable epialleles, which are transmissible through selection and breeding. However, the relationship between DNA methylation and polyploid plant domestication remains elusive. Results We report comprehensive epigenomic and functional analyses, including ~12 million differentially methylated cytosines in domesticated allotetraploid cottons and their tetraploid and diploid relatives. Methylated genes evolve faster than unmethylated genes; DNA methylation changes between homoeologous loci are associated with homoeolog-expression bias in the allotetraploids. Significantly, methylation changes induced in the interspecific hybrids are largely maintained in the allotetraploids. Among 519 differentially methylated genes identified between wild and cultivated cottons, some contribute to domestication traits, including flowering time and seed dormancy. CONSTANS (CO) and CO-LIKE (COL) genes regulate photoperiodicity in Arabidopsis. COL2 is an epiallele in allotetraploid cottons. COL2A is hypermethylated and silenced, while COL2D is repressed in wild cottons but highly expressed due to methylation loss in all domesticated cottons tested. Inhibiting DNA methylation activates COL2 expression, and repressing COL2 in cultivated cotton delays flowering. Conclusions We uncover epigenomic signatures of domestication traits during cotton evolution. Demethylation of COL2 increases its expression, inducing photoperiodic flowering, which could have contributed to the suitability of cotton for cultivation worldwide. These resources should facilitate epigenetic engineering, breeding, and improvement of polyploid crops
Rapid identification of causal mutations in tomato EMS populations via mapping-by-sequencing
The tomato is the model species of choice for fleshy fruit development and for the Solanaceae family. Ethyl methanesulfonate (EMS) mutants of tomato have already proven their utility for analysis of gene function in plants, leading to improved breeding stocks and superior tomato varieties. However, until recently, the identification of causal mutations that underlie particular phenotypes has been a very lengthy task that many laboratories could not afford because of spatial and technical limitations. Here, we describe a simple protocol for identifying causal mutations in tomato using a mapping-by-sequencing strategy. Plants displaying phenotypes of interest are first isolated by screening an EMS mutant collection generated in the miniature cultivar Micro-Tom. A recombinant F2 population is then produced by crossing the mutant with a wild-type (WT; non-mutagenized) genotype, and F2 segregants displaying the same phenotype are subsequently pooled. Finally, whole-genome sequencing and analysis of allele distributions in the pools allow for the identification of the causal mutation. The whole process, from the isolation of the tomato mutant to the identification of the causal mutation, takes 6-12 months. This strategy overcomes many previous limitations, is simple to use and can be applied in most laboratories with limited facilities for plant culture and genotyping
The effect of transposable elements on phenotypic variation: insights from plants to humans
Efficient detection of transposable element insertion polymorphisms between genomes using short-read sequencing data
AbstractTransposable elements (TEs) are powerful generators of major-effect mutations, most of which are deleterious at the species level and maintained at very low frequencies within populations. As reference genomes can only capture a minor fraction of such variants, methods were developed to detect TE insertion polymorphisms (TIPs) in non-reference genomes from short-read sequencing data, which are becoming increasingly available. We present here a bioinformatic framework combining an improved version of the SPLITREADER and TEPID pipelines to detect non-reference TE presence and reference TE absence variants, respectively. We benchmark our method on ten non-reference Arabidopsis thaliana genomes and demonstrate its high specificity and sensitivity in the detection of TIPs between genomes.</jats:p
- …
