1,542 research outputs found
Observing molecular hydrogen clouds and dark massive objects in galactic halos
Molecular hydrogen clouds can contribute substantially to the galactic halo<
dark matter and may lead to the birth of massive halo objects (MHOs) observed
indirectly by microlensing. We present a method to detect these molecular
clouds in the halo of M31 using the Doppler shift effect. We also consider the
possibility to directly observe MHOs in the halo of M31 via their infrared
emission.Comment: 7 pages, postscript file, to appear in Astron. & Astrophy
Temporoparietal encoding of space and time during vestibular-guided orientation
When we walk in our environment, we readily determine our travelled distance and location using visual cues. In the dark, estimating travelled distance uses a combination of somatosensory and vestibular (i.e., inertial) cues. The observed inability of patients with complete peripheral vestibular failure to update their angular travelled distance during active or passive turns in the dark implies a privileged role for vestibular cues during human angular orientation. As vestibular signals only provide inertial cues of self-motion (e.g., velocity, °/s), the brain must convert motion information to distance information (a process called 'path integration') to maintain our spatial orientation during self-motion in the dark. It is unknown, however, what brain areas are involved in converting vestibular-motion signals to those that enable such vestibular-spatial orientation. Hence, using voxel-based lesion-symptom mapping techniques, we explored the effect of acute right hemisphere lesions in 18 patients on perceived angular position, velocity and motion duration during whole-body angular rotations in the dark. First, compared to healthy controls' spatial orientation performance, we found that of the 18 acute stroke patients tested, only the four patients with damage to the temporoparietal junction showed impaired spatial orientation performance for leftward (contralesional) compared to rightward (ipsilesional) rotations. Second, only patients with temporoparietal junction damage showed a congruent underestimation in both their travelled distance (perceived as shorter) and motion duration (perceived as briefer) for leftward compared to rightward rotations. All 18 lesion patients tested showed normal self-motion perception. These data suggest that the cerebral cortical regions mediating vestibular-motion ('am I moving?') and vestibular-spatial perception ('where am I?') are distinct. Furthermore, the congruent contralesional deficit in time (motion duration) and position perception, seen only in temporoparietal junction patients, may reflect a common neural substrate in the temporoparietal junction that mediates the encoding of motion duration and travelled distance during vestibular-guided navigation. Alternatively, the deficits in timing and spatial orientation with temporoparietal junction lesions could be functionally linked, implying that the temporoparietal junction may act as a cortical temporal integrator, combining estimates of self-motion velocity over time to derive an estimate of travelled distance. This intriguing possibility predicts that timing abnormalities could lead to spatial disorientation
Charge based intra-cartilage delivery of single dose dexamethasone using Avidin nano-carriers suppresses cytokine-induced catabolism long term
Objective: Avidin exhibits ideal characteristics for targeted intra-cartilage drug delivery: its small size and optimal positive charge enable rapid penetration through full-thickness cartilage and electrostatic binding interactions that give long half-lives in vivo. Here we conjugated Avidin with dexamethasone (DEX) and tested the hypothesis that single-dose Avidin-delivered DEX can ameliorate catabolic effects in cytokine-challenged cartilage relevant to post-traumatic OA.
Methods: Avidin was covalently conjugated with DEX using fast (ester) and slow, pH-sensitive release (hydrazone) linkers. DEX release kinetics from these conjugates was characterized using 3H-DEX-Avidin (scintillation counting). Cartilage explants treated with IL-1α were cultured with or without Avidin-DEX conjugates and compared to soluble DEX. Sulfated-glycosaminoglycan (sGAG) loss and biosynthesis rates were measured using DMMB assay and 35S-incorporation, respectively. Chondrocyte viability was measured using fluorescence staining.
Results: Ester linker released DEX from Avidin significantly faster than hydrazone under physiological buffer conditions. Single dose Avidin-DEX suppressed cytokine-induced sGAG loss over 3-weeks, rescued IL-1α-induced cell death, and restored sGAG synthesis levels without causing cytotoxicity. The two Avidin-DEX conjugates in 1:1 combination (fast:slow) had the most prominent bioactivity compared to single dose soluble-DEX, which had a shorter-lived effect and thus needed continuous replenishment throughout the culture period to ameliorate catabolic effects.
Conclusion: Intra-cartilage drug delivery remains inadequate as drugs rapidly clear from the joint, requiring multiple injections or sustained release of high doses in synovial fluid. A single dose of Avidin-conjugated drug enables rapid uptake and sustained delivery inside cartilage at low intratissue doses, and potentially can minimize unwanted drug exposure to other joint tissues.Deshpande Center for Technological InnovationNational Science Foundation (U.S.). Materials Research Science and Engineering Centers (Program) (Award DMR-1419807
Recommended from our members
Low-loss Waveguides and Devices for Compact THz Systems
A rigorous full-vectorial modal solution approach based on the finite element method is used to find the propagation properties of THz waveguides. Design approaches are presented to reduce the modal loss. Design of several THz devices, including quantum cascade lasers, plasmonic waveguides, power splitters and narrow-band filters are also presented
Recommended from our members
Low-loss Waveguides for THz Guidance and Devices
The terahertz (THz) region occupies a large portion of the electromagnetic spectrum, located between the microwave and optical frequencies and normally is defined as the band ranging from 0.1 to 10 THz. In recent years, this intermediate THz radiation band has attracted considerable interest, because it offers significant scientific and technological potential for applications in many fields, such as sensing [1], imaging [2] and spectroscopy [3]. However, waveguiding in this intermediate spectral region is a major challenge and strong dielectric and conductive losses in the terahertz frequency range have been a major problem for waveguiding. The conventional guiding structures exemplified by microstrips, coplanar striplines and coplanar waveguides [4] are highly lossy and dispersive. However, so far the most promising dielectric waveguides have been the use of photonic crystal fibers at terahertz frequencies [5, 6] and metal coated guides [7] at terahertz frequencies. In this paper, various types of practical dielectric and metal coated waveguides are evaluated and design optimization of Quantum Cascade Lasers, MMI-based power splitters and narrow-band filters are presented, by using full-vectorial finite element method [8]. © (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only
Recommended from our members
Characterization of graphene-based devices for THz Systems
The H-field finite element method (FEM) based full-vector formulation is used in the present work to study the vectorial modal field properties and the complex propagation characteristics of Surface Plasmon modes of a hollow-core dielectric coated rectangular waveguide structures, and graphene based structures. Additionally, the finite difference time domain (FDTD) method is used to estimate the dispersion parameters and the propagation loss of such waveguides and devices
Recommended from our members
Characterization of low-loss waveguides and devices for terahertz radiation
. A rigorous full-vectorial modal solution approach based on the finite element method is used to find the propagation properties of terahertz (THz) waveguides, such as photonic crystal fibers, quantum cascaded lasers, plasmonic waveguides, power splitters, and narrow-band filters. Design approaches to reduce the modal loss due to the material and leakage loss in photonic crystal fibers and in metal-coated hollow-glass plasmonic waveguides have also been considered. The plasmonic confinement and gain threshold of quantum cascaded lasers used as THz sources and the chromatic dispersion in plasmonic waveguides are also presented
Recommended from our members
Emergence of THz technologies and design and optimisation low-loss waveguides and devices
THz is an emerging technology with many important applications in imaging and sensing, but due to lack of suitable low-loss waveguides future progress can be limited. A rigorous full-vectorial modal solution approach based on the computationally efficient finite element method is used to find the propagation properties of THz waveguides. Design approaches are presented to reduce the modal loss of such waveguides. Designs of several THz devices, including quantum cascade lasers, power splitters and narrow-band filters are also presented
Recommended from our members
Dispersion characteristics of plasmonic waveguides for THz waves
Today there is an increasing surge in Surface Plasmon based research and recent studies have shown that a wide range of plasmon-based optical elements and techniques have led to the development of a variety of active switches, passive waveguides, biosensors, lithography masks, to name just a few. The Terahertz (THz) frequency region of the electromagnetic spectrum is located between the traditional microwave spectrum and the optical frequencies, and offers a significant scientific and technological potential in many fields, such as in sensing, in imaging and in spectroscopy. Waveguiding in this intermediate spectral region is a major challenge. Amongst the various THz waveguides suggested, the metal-clad waveguides supporting surface plasmon modes waves and specifically hollow core structures, coated with insulating material are showing the greatest promise as low-loss waveguides for their use in active components and as well as passive waveguides. The H-field finite element method (FEM) based full-vector formulation is used to study the vectorial modal field properties and the complex propagation characteristics of Surface Plasmon modes of a hollow-core dielectric coated rectangular waveguide structure. Additionally, the finite difference time domain (FDTD) method is used to estimate the dispersion parameters and the propagation loss of the rectangular waveguide
- …
