7,249 research outputs found
A quantum inspired evolutionary algorithm for dynamic multicast routing with network coding
This paper studies and models the multicast routing problem with network coding in dynamic network environment, where computational and bandwidth resources are to be jointly optimized. A quantum inspired evolutionary algorithm (QEA) is developed to address the problem above, where a restart scheme is devised for well adapting QEA for tracing the ever-changing optima in dynamic environment. Experimental results show that the proposed QEA outperforms a number of existing evolutionary algorithms in terms of the best solution obtained
A nondominated sorting genetic algorithm for bi-objective network coding based multicast routing problems
Network coding is a new communication technique that generalizes routing, where, instead of simply forwarding the packets they receive, intermediate nodes are allowed to recombine (code) together some of the data packets received from different incoming links if necessary. By doing so, the maximum information flow in a network can always be achieved. However, performing coding operations (i.e. recombining data packets) incur computational overhead and delay of data processing at the corresponding nodes.
In this paper, we investigate the optimization of the network coding based multicast routing problem with respect to two widely considered objectives, i.e. the cost and the delay. In general, reducing cost can result into a cheaper multicast solution for network service providers, while decreasing delay improves the service quality for users. Hence we model the problem as a bi-objective optimization problem to minimize the total cost and the maximum transmission delay of a multicast. This bi-objective optimization problem has not been considered in the literature. We adapt the Elitist Nondominated Sorting Genetic Algorithm (NSGA-II) for the new problem by introducing two adjustments. As there are many infeasible solutions in the search space, the first adjustment is an initialization scheme to generate a population of feasible and diversified solutions. These initial solutions help to guide the search towards the Pareto-optimal front. In addition, the original NSGA-II is very likely to produce a number of solutions with identical objective values at each generation, which may seriously deteriorate the level of diversity and the optimization performance. The second adjustment is an individual delegate scheme where, among those solutions with identical objective values, only one of them is retained in the population while the others are deleted. Experimental results reveal that each adopted adjustment contributes to the adaptation of NSGA-II for the problem concerned. Moreover, the adjusted NSGA-II outperforms a number of state-of-the-art multiobjective evolutionary algorithms with respect to the quality of the obtained nondominated solutions in the conducted experiments
Three-dimensional numerical study of flow characteristic and membrane fouling evolution in an enzymatic membrane reactor
In order to enhance the understanding of membrane fouling mechanism, the
hydrodynamics of granular flow in a stirred enzymatic membrane reactor was
numerically investigated in the present study. A three-dimensional Euler-Euler
model, coupled with k-e mixture turbulence model and drag function for
interphase momentum exchange, was applied to simulate the two-phase
(fluid-solid) turbulent flow. Numerical simulations of single- or two-phase
turbulent flow under various stirring speed were implemented. The numerical
results coincide very well with some published experimental data. Results for
the distributions of velocity, shear stress and turbulent kinetic energy were
provided. Our results show that the increase of stirring speed could not only
enlarge the circulation loops in the reactor, but it can also increase the
shear stress on the membrane surface and accelerate the mixing process of
granular materials. The time evolution of volumetric function of granular
materials on the membrane surface has qualitatively explained the evolution of
membrane fouling.Comment: 10 panges, 8 figure
An improved MOEA/D algorithm for multi-objective multicast routing with network coding
Network coding enables higher network throughput, more balanced traffic, and securer data transmission. However, complicated mathematical operations incur when packets are combined at intermediate nodes, which, if not operated properly, lead to very high network resource consumption and unacceptable delay. Therefore, it is of vital importance to minimize various network resources and end-to-end delays while exploiting promising benefits of network coding.
Multicast has been used in increasingly more applications, such as video conferencing and remote education. In this paper the multicast routing problem with network coding is formulated as a multi-objective optimization problem (MOP), where the total coding cost, the total link cost and the end-to-end delay are minimized simultaneously. We adapt the multi-objective evolutionary algorithm based on decomposition (MOEA/D) for this MOP by hybridizing it with a population-based incremental learning technique which makes use of the global and historical information collected to provide additional guidance to the evolutionary search. Three new schemes are devised to facilitate the performance improvement, including a probability-based initialization scheme, a problem-specific population updating rule, and a hybridized reproduction operator. Experimental results clearly demonstrate that the proposed algorithm outperforms a number of state-of-the-art MOEAs regarding the solution quality and computational time
Computational Design of Flexible Electride with Nontrivial Band Topology
Electrides, with their excess electrons distributed in crystal cavities playing the role of anions, exhibit a variety of unique electronic and magnetic properties. In this work, we employ the first-principles crystal structure prediction to identify a new prototype of A3B electride in which both interlayer spacings and intralayer vacancies provide channels to accommodate the excess electrons in the crystal. This A3B type of structure is calculated to be thermodynamically stable for two alkaline metals oxides (Rb3O and K3O). Remarkably, the unique feature of multiple types of cavities makes the spatial arrangement of anionic electrons highly flexible via elastic strain engineering and chemical substitution, in contrast to the previously reported electrides characterized by a single topology of interstitial electrons. More importantly, our first-principles calculations reveal that Rb3O is a topological Dirac nodal line semimetal, which is induced by the band inversion at the general electronic k momentums in the Brillouin zone associated with the intersitial electric charges. The discovery of flexible electride in combining with topological electronic properties opens an avenue for electride design and shows great promises in electronic device applications
A hybrid EDA for load balancing in multicast with network coding
Load balancing is one of the most important issues in the practical deployment of multicast with network coding. However, this issue has received little research attention. This paper studies how traffic load of network coding based multicast (NCM) is disseminated in a communications network, with load balancing considered as an important factor. To this end, a hybridized estimation of distribution algorithm (EDA) is proposed, where two novel schemes are integrated into the population based incremental learning (PBIL) framework to strike a balance between exploration and exploitation, thus enhance the efficiency of the stochastic search. The first scheme is a bi-probability-vector coevolution scheme, where two probability vectors (PVs) evolve independently with periodical individual migration. This scheme can diversify the population and improve the global exploration in the search. The second scheme is a local search heuristic. It is based on the problem-specific domain knowledge and improves the NCM transmission plan at the expense of additional computational time. The heuristic can be utilized either as a local search operator to enhance the local exploitation during the evolutionary process, or as a follow-up operator to improve the best-so-far solutions found after the evolution. Experimental results show the effectiveness of the proposed algorithms against a number of existing evolutionary algorithms
A modified ant colony optimization algorithm for network coding resource minimization
The paper presents a modified ant colony optimization approach for the network coding resource minimization problem. It is featured with several attractive mechanisms specially devised for solving the network coding resource minimization problem: 1) a multi-dimensional pheromone maintenance mechanism is put forward to address the issue of pheromone overlapping; 2) problem-specific heuristic information is employed to enhance the heuristic search (neighboring area search) capability; 3) a tabu-table based path construction method is devised to facilitate the construction of feasible (link-disjoint) paths from the source to each receiver; 4) a local pheromone updating rule is developed to guide ants to construct appropriate promising paths; 5) a solution reconstruction method is presented, with the aim of avoiding prematurity and improving the global search efficiency of proposed algorithm. Due to the way it works, the ant colony optimization can well exploit the global and local information of routing related problems during the solution construction phase. The simulation results on benchmark instances demonstrate that with the five extended mechanisms integrated, our algorithm outperforms a number of existing algorithms with respect to the best solutions obtained and the computational time
On minimizing coding operations in network coding based multicast: an evolutionary algorithm
In telecommunications networks, to enable a valid data transmission based on network coding, any intermediate node within a given network is allowed, if necessary, to perform coding operations. The more coding operations needed, the more coding resources consumed and thus the more computational overhead and transmission delay incurred. This paper investigates an efficient evolutionary algorithm to minimize the amount of coding operations required in network coding based multicast. Based on genetic algorithms, we adapt two extensions in the proposed evolutionary algorithm, namely a new crossover operator and a neighbourhood search operator, to effectively solve the highly complex problem being concerned. The new crossover is based on logic OR operations to each pair of selected parent individuals, and the resulting offspring are more likely to become feasible. The aim of this operator is to intensify the search in regions with plenty of feasible individuals. The neighbourhood search consists of two moves which are based on greedy link removal and path reconstruction, respectively. Due to the specific problem feature, it is possible that each feasible individual corresponds to a number of, rather than a single, valid network coding based routing subgraphs. The neighbourhood search is applied to each feasible individual to find a better routing subgraph that consumes less coding resource. This operator not only improves solution quality but also accelerates the convergence. Experiments have been carried out on a number of fixed and randomly generated benchmark networks. The results demonstrate that with the two extensions, our evolutionary algorithm is effective and outperforms a number of state-of-the-art algorithms in terms of the ability of finding optimal solutions
Therapeutic Angiogenesis of Chinese Herbal Medicines in Ischemic Heart Disease:A Review
Ischemic heart disease (IHD) is one of the primary causes of death around the world. Therapeutic angiogenesis is a promising innovative approach for treating IHD, improving cardiac function by promoting blood perfusion to the ischemic myocardium. This treatment is especially important for targeting patients that are unable to undergo angioplasty or bypass surgery. Chinese herbal medicines have been used for more than 2,500 years and they play an important role alongside contemporary medicines in China. Growing evidence in animal models show Chinese herbal medicines can provide therapeutic effect on IHD by targeting angiogenesis. Identifying the mechanism in which Chinese herbal medicines can promote angiogenesis in IHD is a major topic in the field of traditional Chinese medicine, and has the potential for advancing therapeutic treatment. This review summarizes the progression of research and highlights potential pro-angiogenic mechanisms of Chinese herbal medicines in IHD. In addition, an outline of the limitations of Chinese herbal medicines and challenges they face will be presented
- …
