77 research outputs found

    Molecular subtypes predict the preferential site of distant metastasis in advanced breast cancer: a nationwide retrospective study

    Get PDF
    ObjectiveThis study aimed to explore possible associations between molecular subtypes and site of distant metastasis in advanced breast cancer (ABC).Methods3577 ABC patients were selected from 21 hospitals of seven geographic regions in China from 2012-2014. A questionnaire was designed to collect medical information regarding demographic characteristics, risk factors, molecular subtype, recurrence/metastasis information, and disease-free survival (DFS). The cancers were classified into Luminal A, Luminal B, HER2-enriched and Triple Negative subtypes. Chi-square test and multivariate Cox proportional hazard models were performed to explore the associations between molecular subtypes and distant metastasis sites.ResultsA total of 2393 cases with molecular subtypes information were finally examined. Patients with Luminal A (51.1%) and Luminal B (44.7%) were most prone to bone metastasis, whereas liver metastasis was more frequently observed in HER2-enriched ABC patients (29.1%).The cumulative recurrence and metastasis rates of ABC patients at 36 months of DFS were the most significant within molecular types, of which Triple Negative was the highest (82.7%), while that of Luminal A was the lowest (58.4%). In the adjusted Cox regression analysis, Luminal B, HER2-enriched and Triple Negative subtypes increased the risk of visceral metastasis by 23%, 46% and 87% respectively. In addition, Triple Negative patients had a higher probability of brain metastasis (HR 3.07, 95% CI: 1.04-9.07).ConclusionMolecular subtypes can predict the preferential sites of distant metastasis, emphasizing that these associations were of great help in choices for surveillance, developing appropriate screening and cancer management strategies for follow-up and personalized therapy in ABC patients

    A multimodal cell census and atlas of the mammalian primary motor cortex

    Get PDF
    ABSTRACT We report the generation of a multimodal cell census and atlas of the mammalian primary motor cortex (MOp or M1) as the initial product of the BRAIN Initiative Cell Census Network (BICCN). This was achieved by coordinated large-scale analyses of single-cell transcriptomes, chromatin accessibility, DNA methylomes, spatially resolved single-cell transcriptomes, morphological and electrophysiological properties, and cellular resolution input-output mapping, integrated through cross-modal computational analysis. Together, our results advance the collective knowledge and understanding of brain cell type organization: First, our study reveals a unified molecular genetic landscape of cortical cell types that congruently integrates their transcriptome, open chromatin and DNA methylation maps. Second, cross-species analysis achieves a unified taxonomy of transcriptomic types and their hierarchical organization that are conserved from mouse to marmoset and human. Third, cross-modal analysis provides compelling evidence for the epigenomic, transcriptomic, and gene regulatory basis of neuronal phenotypes such as their physiological and anatomical properties, demonstrating the biological validity and genomic underpinning of neuron types and subtypes. Fourth, in situ single-cell transcriptomics provides a spatially-resolved cell type atlas of the motor cortex. Fifth, integrated transcriptomic, epigenomic and anatomical analyses reveal the correspondence between neural circuits and transcriptomic cell types. We further present an extensive genetic toolset for targeting and fate mapping glutamatergic projection neuron types toward linking their developmental trajectory to their circuit function. Together, our results establish a unified and mechanistic framework of neuronal cell type organization that integrates multi-layered molecular genetic and spatial information with multi-faceted phenotypic properties

    An Efficient Adaptive Denoising Algorithm for Remote Sensing Images

    No full text
    Typically, after the capturing, imaging, and transferring processes have been accomplished, the digital images will contain a variety of noise, caused by both the equipment itself and by the complex working environment. Consequently, it is necessary to perform a de-noising process to facilitate the extraction of useful information. This paper presents a fast and efficient denoising algorithm, which combines the advantages of traditional median filters and weighted filter algorithms. In this algorithm, the noise in the figure is determined, and those results are applied to adaptively change the size of the window, while assigning different weights to the pixels in the filter window. The experimental results show that we can significantly remove almost all salt and pepper noise, while retaining full image textures, edges, and other minutiae

    Novel Regeneration Approach for Creating Reusable FO-SPR Probes with NTA Surface Chemistry

    No full text
    To date, surface plasmon resonance (SPR) biosensors have been exploited in numerous different contexts while continuously pushing boundaries in terms of improved sensitivity, specificity, portability and reusability. The latter has attracted attention as a viable alternative to disposable biosensors, also offering prospects for rapid screening of biomolecules or biomolecular interactions. In this context here, we developed an approach to successfully regenerate a fiber-optic (FO)-SPR surface when utilizing cobalt (II)-nitrilotriacetic acid (NTA) surface chemistry. To achieve this, we tested multiple regeneration conditions that can disrupt the NTA chelate on a surface fully saturated with His6-tagged antibody fragments (scFv-33H1F7) over ten regeneration cycles. The best surface regeneration was obtained when combining 100 mM EDTA, 500 mM imidazole and 0.5% SDS at pH 8.0 for 1 min with shaking at 150 rpm followed by washing with 0.5 M NaOH for 3 min. The true versatility of the established approach was proven by regenerating the NTA surface for ten cycles with three other model system bioreceptors, different in their size and structure: His6-tagged SARS-CoV-2 spike fragment (receptor binding domain, RBD), a red fluorescent protein (RFP) and protein origami carrying 4 RFPs (Tet12SN-RRRR). Enabling the removal of His6-tagged bioreceptors from NTA surfaces in a fast and cost-effective manner can have broad applications, spanning from the development of biosensors and various biopharmaceutical analyses to the synthesis of novel biomaterials

    Autocrine motility factor promotes endometrial cancer progression by targeting GPER-1

    No full text
    Abstract Background Autocrine motility factor (AMF) is a critical factor regulating aggressiveness of endometrial cancer (EC). Multiple pieces of evidence indicate that it is through G protein coupled estrogen receptor (GPER) signaling pathway that some growth factors promoted the migration and proliferation of tumor cells. The aim of this study is to explore the role of GPER-1 in AMF mediated regulatory mechanisms of EC recurrence and progression. Methods Real-Time Cell Analysis (RTCA) assays were performed to assess whether AMF depends on Autocrine motility factor recepter (AMFR) signaling in EC cells. A genome-wide expression microarray and Yeast Two-Hybrid assay were used to detect AMF and GPER-1 interaction in the context of AMFR depletion, and co-immunoprecipitation and immunofluorescence experiments were performed to confirm the physical interaction. Isobaric Tags for Relative and Absolute Quantification (iTRAQ) analysis was used for the identification of the target pathway activated by AMF-GPER-1 interaction. Cohorts of mice harboring xenografts derived from modified SPEC2 cell lines were treated with or without exogenous AMF to validate the results of previous experiments. Immunohistochemistry was performed to assess AMF and GPER-1 expression in endometrial cancer specimens and normal endometrium. Results Our data showed that GPER-1 binds to AMF and the formed complex translocates from the plasma membrane to the cytoplasm. Mechanistic investigations demonstrated that interaction between AMF and GPER-1 triggers phosphoinositide-3-kinase signaling and promotes EC cell growth. More importantly, through animal experiments and human tissue experiments, we found that AMF contributes to GPER-1-mediated EC progression, which is consistent with the above observations. Conclusions Our work not only delineated the regulatory mechanisms of endometrial cancer progression by AMF-GPER-1-AKT signaling cascade but also laid the foundation of targeting this pathway for treating endometrial cancer

    Novel Regeneration Approach for Creating Reusable FO-SPR Probes with NTA Surface Chemistry

    No full text
    To date, surface plasmon resonance (SPR) biosensors have been exploited in numerous different contexts while continuously pushing boundaries in terms of improved sensitivity, specificity, portability and reusability. The latter has attracted attention as a viable alternative to disposable biosensors, also offering prospects for rapid screening of biomolecules or biomolecular interactions. In this context here, we developed an approach to successfully regenerate a fiber-optic (FO)-SPR surface when utilizing cobalt (II)-nitrilotriacetic acid (NTA) surface chemistry. To achieve this, we tested multiple regeneration conditions that can disrupt the NTA chelate on a surface fully saturated with His6-tagged antibody fragments (scFv-33H1F7) over ten regeneration cycles. The best surface regeneration was obtained when combining 100 mM EDTA, 500 mM imidazole and 0.5% SDS at pH 8.0 for 1 min with shaking at 150 rpm followed by washing with 0.5 M NaOH for 3 min. The true versatility of the established approach was proven by regenerating the NTA surface for ten cycles with three other model system bioreceptors, different in their size and structure: His6-tagged SARS-CoV-2 spike fragment (receptor binding domain, RBD), a red fluorescent protein (RFP) and protein origami carrying 4 RFPs (Tet12SN-RRRR). Enabling the removal of His6-tagged bioreceptors from NTA surfaces in a fast and cost-effective manner can have broad applications, spanning from the development of biosensors and various biopharmaceutical analyses to the synthesis of novel biomaterials

    Toosendanin Exerts an Anti-Cancer Effect in Glioblastoma by Inducing Estrogen Receptor β- and p53-Mediated Apoptosis

    No full text
    Glioblastoma (GBM) is the most common primary brain tumor with median survival of approximately one year. This dismal poor prognosis is due to resistance to currently available chemotherapeutics; therefore, new cytotoxic agents are urgently needed. In the present study, we reported the cytotoxicity of toosendanin (TSN) in the GBM U87 and C6 cell lines in vitro and in vivo. By using the MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide) assay, flow cytometry analysis, and Western blot, we found that TSN inhibited U87 and C6 cell proliferation and induced apoptosis at a concentration as low as 10 nM. Administration of TSN also reduced tumor burden in a xenograft model of athymic nude mice. Pharmacological and molecular studies suggested that estrogen receptor β (ERβ) and p53 were prominent targets for TSN. GBM cell apoptosis induced by TSN was a stepwise biological event involving the upregulation of ERβ and contextual activation of functional p53. Collectively, our study indicates, for the first time, that TSN is a candidate of novel anti-cancer drugs for GBM. Furthermore, ERβ and p53 could act as predictive biomarkers for the sensitivity of cancer to TSN

    Research Progress on Continuous SiC Fiber Reinforced Metal Matrix Composite

    No full text
    Metal matrix composites, reinforced with continuous SiC fiber, offer attractive combinations of high specific strength, specific stiffness and elevated temperature performance and are currently being considered for a range of broad prospective applications. The recent research development on SiC fiber reinforced metal matrix composite was reviewed. The key problems, solutions and application of SiC/Al, SiC/Ti, SiC/Cu, SiC/Ni composites were summarized separately. Finally, the limiting factors in the application of the metal matrix composites were point out:cost issues, interfacial problems, anisotropy of composites and lack of systematic quality estimate
    • …
    corecore