35 research outputs found

    Simulation study of a high‐performance brain PET system with dodecahedral geometry

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/145295/1/mp12996_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/145295/2/mp12996.pd

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30M⊙M_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Theoretical Study of As<sub>2</sub>O<sub>3</sub> Adsorption Mechanisms on CaO surface

    No full text
    Emission of hazardous trace elements, especially arsenic from fossil fuel combustion, have become a major concern. Under an oxidizing atmosphere, most of the arsenic converts to gaseous As2O3. CaO has been proven effective in capturing As2O3. In this study, the mechanisms of As2O3 adsorption on CaO surface under O2 atmosphere were investigated by density functional theory (DFT) calculation. Stable physisorption and chemisorption structures and related reaction paths are determined; arsenite (AsO33&#8722;) is proven to be the form of adsorption products. Under the O2 atmosphere, the adsorption product is arsenate (AsO43&#8722;), while tricalcium orthoarsenate (Ca3As2O8) and dicalcium pyroarsenate (Ca2As2O7) are formed according to different adsorption structures

    Enhancing the Image Quality via Transferred Deep Residual Learning of Coarse PET Sinograms

    No full text

    Biomimetic Nano‐Degrader Based CD47‐SIRPα Immune Checkpoint Inhibition Promotes Macrophage Efferocytosis for Cardiac Repair

    No full text
    Abstract CD47‐SIRPα axis is an immunotherapeutic target in tumor therapy. However, current monoclonal antibody targeting CD47‐SIRPα axis is associated with on‐target off‐tumor and antigen sink effects, which significantly limit its potential clinical application. Herein, a biomimetic nano‐degrader is developed to inhibit CD47‐SIRPα axis in a site‐specific manner through SIRPα degradation, and its efficacy in acute myocardial infarction (AMI) is evaluated. The nano‐degrader is constructed by hybridizing liposome with red blood cell (RBC) membrane (RLP), which mimics the CD47 density of senescent RBCs and possesses a natural high‐affinity binding capability to SIRPα on macrophages without signaling capacity. RLP would bind with SIRPα and induce its lysosomal degradation through receptor‐mediated endocytosis. To enhance its tissue specificity, Ly6G antibody conjugation (aRLP) is applied, enabling its attachment to neutrophils and accumulation within inflammatory sites. In the myocardial infarction model, aRLP accumulated in the infarcted myocardium blocks CD47‐SIRPα axis and subsequently promoted the efferocytosis of apoptotic cardiomyocytes by macrophage, improved heart repair. This nano‐degrader efficiently degraded SIRPα in lysosomes, providing a new strategy for immunotherapy with great clinical transformation potential

    Large‐Scale Proteome Profiling Identifies Biomarkers Associated with Suspected Neurosyphilis Diagnosis

    No full text
    Abstract Neurosyphilis (NS) is a central nervous system (CNS) infection caused by Treponema pallidum (T. pallidum). NS can occur at any stage of syphilis and manifests as a broad spectrum of clinical symptoms. Often referred to as “the great imitator,” NS can be easily overlooked or misdiagnosed due to the absence of standard diagnostic tests, potentially leading to severe and irreversible organ dysfunction. In this study, proteomic and machine learning model techniques are used to characterize 223 cerebrospinal fluid (CSF) samples to identify diagnostic markers of NS and provide insights into the underlying mechanisms of the associated inflammatory responses. Three biomarkers (SEMA7A, SERPINA3, and ITIH4) are validated as contributors to NS diagnosis through multicenter verification of an additional 115 CSF samples. We anticipate that the identified biomarkers will become effective tools for assisting in diagnosis of NS. Our insights into NS pathogenesis in brain tissue may inform therapeutic strategies and drug discoveries for NS patients

    Hepatitis E virus infects human testicular tissue and Sertoli cells

    No full text
    Globally, hepatitis E virus (HEV) infections are prevalent. The finding of high viral loads and persistent viral shedding in ejaculate suggests that HEV replicates within the human male genital tract, but its target organ is unknown and appropriate models are lacking. We aimed to determine the HEV tropism in the human testis and its potential influence on male reproductive health. We conducted an ex vivo culture of human testis explants and in vitro culture of primary human Sertoli cells. Clinically derived HEV genotype 1 (HEV1) and HEV3 virions, as well as rat-derived HEV-C1, were used for inoculation. Transcriptomic analysis was performed on testis tissues collected from tacrolimus-treated rabbits with chronic HEV3 infection. Our findings reveal that HEV3, but not HEV1 or HEV-C1, can replicate in human testis explants and primary human Sertoli cells. Tacrolimus treatment significantly enhanced the replication efficiency of HEV3 in testis explants and enabled successful HEV1 infection in Sertoli cells. HEV3 infection disrupted the secretion of several soluble factors and altered the cytokine microenvironment within primary human Sertoli cells. Finally, intratesticular transcriptomic analysis of immunocompromised rabbits with chronic HEV infection indicated downregulation of genes associated with spermatogenesis. HEV can infect the human testicular tissues and Sertoli cells, with increased replication efficiency when exposed to tacrolimus treatment. These findings shed light on how HEV may persist in the ejaculate of patients with chronic hepatitis E and provide valuable ex vivo tools for studying countermeasures.</p
    corecore