20 research outputs found

    Using Image-Processing Settings to Determine an Optimal Operating Point for Object Detection on Imaging Devices

    Get PDF
    This publication describes techniques and processes for using image-processing settings (e.g., Auto-Exposure (AE), Auto-Focus (AF), and/or Auto-White Balance (AWB)) to determine an optimal operating point for object detection by an object detector on an imaging device. An operating point is provided to the object detector by a manufacturer to enable the object detector to execute object detection. Through object detection, the object detector determines if an object is identified in the scene based on a confidence score. The optimal operating point has a computed image-processing setting that is closest to an ideal value of the image-processing setting. In an example, a fixed penalty function allows an optimal operating point to be determined using computed AE results for the image at different operating points compared to an ideal AE for the image. The smallest difference between the computed AEs and ideal AE corresponds to the optimal operating point for the image. The process can be repeated for many images to determine an optimal operating point across many types of images. Additionally, the process can be conducted with other image-processing settings, such as AF and AWB, to guide the selection of an optimal operating point across many settings. The determined optimal operating point can be provided to an object detector on an imaging device to provide a positive user experience with the imaging device

    Two vacuolar invertase inhibitors PpINHa and PpINH3 display opposite effects on fruit sugar accumulation in peach

    Get PDF
    Soluble sugars are an important determinant of fruit taste, but their accumulation mechanisms remain elusive. In this study, we report two vacuolar invertase inhibitor genes involved in sugar accumulation in peach, PpINHa and PpINH3. Transient overexpression of PpINH3 in peach fruits resulted in an increase in sugar content, while the opposite trend was detected for PpINHa. Unexpectedly, PpINH3 and PpINHa both had no physical interaction with vacuolar invertase (VIN). Moreover, the PpVIN genes had no or extremely low expression in fruits at the ripening stage. These results suggested that the regulatory role of PpINHa and PpINH3 in sugar accumulation is unlikely due to their interaction with PpVINs. Additionally, overexpression of PpINHa and PpINH3 had an impact on transcription of genes related to fruit sugar metabolism and transport, which is likely responsible for their regulatory role in fruit sugar accumulation. Altogether, these results indicated an important role of PpINHs in fruit accumulation in peach. Our study provides new insights into molecular mechanisms underlying sugar accumulation, which could be useful for genetic improvement of fruit taste in breeding programs of peach and other fruit crops

    Targeting of the Human Coagulation Factor IX Gene at rDNA Locus of Human Embryonic Stem Cells

    Get PDF
    BACKGROUND: Genetic modification is a prerequisite to realizing the full potential of human embryonic stem cells (hESCs) in human genetic research and regenerative medicine. Unfortunately, the random integration methods that have been the primary techniques used keep creating problems, and the primary alternative method, gene targeting, has been effective in manipulating mouse embryonic stem cells (mESCs) but poorly in hESCs. METHODOLOGY/PRINCIPAL FINDINGS: Human ribosomal DNA (rDNA) repeats are clustered on the short arm of acrocentric chromosomes. They consist of approximately 400 copies of the 45S pre-RNA (rRNA) gene per haploid. In the present study, we targeted a physiological gene, human coagulation factor IX, into the rDNA locus of hESCs via homologous recombination. The relative gene targeting efficiency (>50%) and homologous recombination frequency (>10(-5)) were more than 10-fold higher than those of loci targeted in previous reports. Meanwhile, the targeted clones retained both a normal karyotype and the main characteristics of ES cells. The transgene was found to be stably and ectopically expressed in targeted hESCs. CONCLUSION/SIGNIFICANCE: This is the first targeting of a human physiological gene at a defined locus on the hESC genome. Our findings indicate that the rDNA locus may serve as an ideal harbor for transgenes in hESCs

    DHAV-1 2A1 Peptide – A Newly Discovered Co-expression Tool That Mediates the Ribosomal “Skipping” Function

    Get PDF
    Duck hepatitis A virus 1 (DHAV-1) belongs to the genus Avihepatovirus in the family Picornaviridae. Little research has been carried out on the non-structural proteins of this virus. This study reports that 2A1 protein, the first non-structural protein on the DHAV-1 genome, has a ribosomal “skipping” function mediated by a “-GxExNPGP-” motif. In addition, we prove that when the sequence is extended 10aa to VP1 from the N-terminal of 2A1, the ribosome “skips” completely. However, as the N-terminus of 2A is shortened, the efficiency of ribosomal “skipping” reduces. When 2A1 is shortened to 10aa, it does not function. In addition, we demonstrate that N18, P19 G20, and P21 have vital roles in this function. We find that the expression of upstream and downstream proteins linked by 2A1 is different, and the expression of the upstream protein is much greater than that of the downstream protein. In addition, we demonstrate that it is the nature of 2A1 that is responsible for the expression imbalance. We also shows that the protein “cleavage” is not due to RNA “cleavage” or RNA transcription abnormalities, and the expressed protein level is independent of RNA transcriptional level. This study provides a systematic analysis of the activity of the DHAV-1 2A1 sequence and, therefore, adds to the “tool-box” that can be deployed for the co-expression applications. It provides a reference for how to apply 2A1 as a co-expression tool

    Identification of EIL and ERF Genes Related to Fruit Ripening in Peach

    No full text
    Peach (Prunus persica) is a climacteric fruit with a relatively short shelf life due to its fast ripening or softening process. Here, we report the association of gene families encoding ethylene insensitive-3 like (EIL) and ethylene response factor (ERF) with fruit ripening in peach. In total, 3 PpEILs and 12 PpERFs were highly expressed in fruit, with the majority showing a peak of expression at different stages. All three EILs could activate ethylene biosynthesis genes PpACS1 and PpACO1. One out of the 12 PpERFs, termed PpERF.E2, is a homolog of ripening-associated ERFs in tomato, with a consistently high expression throughout fruit development and an ability to activate PpACS1 and PpACO1. Additionally, four subgroup F PpERFs harboring the EAR repressive motif were able to repress the PpACO1 promoter but could also activate the PpACS1 promoter. Promoter deletion assay revealed that PpEILs and PpERFs could participate in transcriptional regulation of PpACS1 through either direct or indirect interaction with various cis-elements. Taken together, these results suggested that all three PpEILs and PpERF.E2 are candidates involved in ethylene biosynthesis, and EAR motif-containing PpERFs may function as activator or repressor of ethylene biosynthesis genes in peach. Our study provides an insight into the roles of EILs and ERFs in the fruit ripening process

    Suppression of NF-ÎşB Activity: A Viral Immune Evasion Mechanism

    No full text
    Nuclear factor-κB (NF-κB) is an important transcription factor that induces the expression of antiviral genes and viral genes. NF-κB activation needs the activation of NF-κB upstream molecules, which include receptors, adaptor proteins, NF-κB (IκB) kinases (IKKs), IκBα, and NF-κB dimer p50/p65. To survive, viruses have evolved the capacity to utilize various strategies that inhibit NF-κB activity, including targeting receptors, adaptor proteins, IKKs, IκBα, and p50/p65. To inhibit NF-κB activation, viruses encode several specific NF-κB inhibitors, including NS3/4, 3C and 3C-like proteases, viral deubiquitinating enzymes (DUBs), phosphodegron-like (PDL) motifs, viral protein phosphatase (PPase)-binding proteins, and small hydrophobic (SH) proteins. Finally, we briefly describe the immune evasion mechanism of human immunodeficiency virus 1 (HIV-1) by inhibiting NF-κB activity in productive and latent infections. This paper reviews a viral mechanism of immune evasion that involves the suppression of NF-κB activation to provide new insights into and references for the control and prevention of viral diseases

    Expression of the transgene in targeted cells.

    No full text
    <p>(<b>a</b>) RT-PCR analysis of F9expression in targeted clones. The expected product was amplified from all analyzed homologous recombinants after long-term culture (more than 30 passages), while no transcript was detected in wild-type H9 cells. (<b>b</b>) Western blot of the clone’s lysate using an antibody anti human F9 protein. (<b>c</b>) ELISA analysis of supernatants from recombinant culture. No F9 secretion was detected from wild-type H9 cells. The targeted clones secreted the protein at different levels.</p

    Gene targeting of the rDNA locus in hESCs.

    No full text
    <p>(<b>a</b>) For hESC transfection, the efficiency was determined by transient nucleofection of H9 single cells by pmaxGFP. (<b>b</b>) Phase-contrast image of a resistant clone just before picking up. (<b>c</b>) After two weeks of drug selection, a portion of resistant clones were picked up and the remaining clones were fixed and stained with Giemsa stain. Clones with diameters of ≥2 millimeters were considered resistant. (<b>d</b>) PCR result using P1 and P2, and DNA sequencing of the PCR product. (<b>e</b>) The targeted clones showed a normal karyotype (46, XX). (<b>f–g</b>) Southern blot analysis showed a 7.1 kb band for targeted clones using a 5′ probe. When using a 3′ probe corresponding to the second exon of <i>F9</i> gene, both a wild type 4.3 kb fragment and an integrated 10.3 kb fragment will be detected. M, marker. Scale bar  = 200 µm (a–b).</p
    corecore