63 research outputs found

    The combined therapeutic effects of \u3csup\u3e131\u3c/sup\u3eiodine-labeled multifunctional copper sulfide-loaded microspheres in treating breast cancer

    Get PDF
    Compared to conventional cancer treatment, combination therapy based on well-designed nanoscale platforms may offer an opportunity to eliminate tumors and reduce recurrence and metastasis. In this study, we prepared multifunctional microspheres loading 131I-labeled hollow copper sulfide nanoparticles and paclitaxel (131I-HCuSNPs-MS-PTX) for imaging and therapeutics of W256/B breast tumors in rats. 18F-fluordeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) imaging detected that the expansion of the tumor volume was delayed (P\u3c0.05) following intra-tumoral (i.t.) injection with 131I-HCuSNPs-MS-PTX plus near-infrared (NIR) irradiation. The immunohistochemical analysis further confirmed the anti-tumor effect. The single photon emission computed tomography (SPECT)/photoacoustic imaging mediated by 131I-HCuSNPs-MS-PTX demonstrated that microspheres were mainly distributed in the tumors with a relatively low distribution in other organs. Our results revealed that 131I-HCuSNPs-MS-PTX offered combined photothermal, chemo- and radio-therapies, eliminating tumors at a relatively low dose, as well as allowing SPECT/CT and photoacoustic imaging monitoring of distribution of the injected agents non-invasively. The copper sulfide-loaded microspheres, 131I-HCuSNPs-MS-PTX, can serve as a versatile theranostic agent in an orthotopic breast cancer model

    (Table 1) Ice thickness at lake Nam Co, Tibet, during 2008-2009

    No full text
    Lake ice change is one of the sensitive indicators of regional and global climate change. Different sources of data are used in monitoring lake ice phenology nowadays. Visible and Near Infrared bands of imagery (VNIR) are well suited for the observation of freshwater ice change, for example data from AVHRR and MODIS. Active and passive microwave data are also used for the observation of lake ice, e.g., from satellite altimetry and radiometry, backscattering coefficient from QuickSCAT, brightness temperature (Tb) from SSM/I, SMMR, and AMSR-E. Most of the studies are about lake ice cover phenology, while few studies focus on lake ice thickness. For example, Hall et al. using 5 GHz (6 cm) radiometer data showed a good relationship between Tb and ice thickness. Kang et al. found the seasonal evolution of Tb at 10.65 GHz and 18.7 GHz from AMSR-E to be strongly influenced by ice thickness. Many studies on lake ice phenology have been carried out since the 1970s in cold regions, especially in Canada, the USA, Europe, the Arctic, and Antarctica. However, on the Tibetan Plateau, very little research has focused on lake ice-cover change; only a small number of published papers on Qinghai Lake ice observations. The main goal of this study is to investigate the change in lake ice phenology at Nam Co on the Tibetan Plateau using MODIS and AMSR-E data (monitoring the date of freeze onset, the formation of stable ice cover, first appearance of water, and the complete disappearance of ice) during the period 2000-2009

    Thoracic injection of low-dose interleukin-2 as an adjuvant therapy improves the control of the malignant pleural effusions: a systematic review and meta-analysis base on Chinese patients

    No full text
    Abstract Background Interleukin-2 (IL-2) is an important immunotherapy cytokine for various diseases including cancer. Some studies reported the efficacy and safety on cisplatin combined with IL-2 versus cisplatin alone for treating malignant pleural effusion (MPE) through thoracic injection. Methods We searched these studies from medical electronic database. A total of 18 studies that met the inclusion criteria were recruited in this meta-analysis. Pooled odds ratios (OR) with 95% confidence intervals (CI) were determined by the fixed effects model of meta-analysis. Results The objective response rate (ORR) and disease control rate (DCR) of cisplatin plus IL-2 for controlling MPE was significantly higher than that of cisplatin alone (p  0.05). Conclusions The low-dose IL-2 improved the ORR, DCR and QOL of patients in the treatment of MPE. Although it may cause fever in patients, it did not increase other AEs

    Airborne SAR Radiometric Calibration Based on Improved Sliding Window Integral Method

    No full text
    To verify the performance of the high-resolution fully polarimetric synthetic aperture radar (SAR) sensor carried by the Xinzhou 60 remote-sensing aircraft, we used corner reflectors to calibrate the acquired data. The target mechanism in high-resolution SAR images is more complex than it is in low-resolution SAR images, the impact of the point target pointing error on the calibration results is more obvious, and the target echo signal of high-resolution images is more easily affected by speckle noise; thus, more accurate extraction of the point target position and the response energy is required. To solve this problem, this paper introduces image context information and proposes a method to precisely determine the integration region of the corner reflector using sliding windows based on the integral method. The validation indicates that the fully polarimetric SAR sensor on the Xinzhou 60 remote-sensing aircraft can accurately reflect the radiometric characteristics of the ground features and that the integral method can obtain more stable results than the peak method. The sliding window allows the position of the point target to be determined more accurately, and the response energy extracted from the image via the integral method is closer to the theoretical value, which means that the high-resolution SAR system can achieve a higher radiometric calibration accuracy. Additionally, cross-validation reveals that the airborne SAR images have similar quality levels to Sentinel-1A and Gaofen-3 images

    Monitoring glacier and supra-glacier lakes from space in Mt. Qomolangma region of the Himalayas on the Tibetan Plateau in China

    No full text
    Because of the large number and remoteness, satellite data, including microwave data and optical imagery, have commonly been used in alpine glaciers surveys. Using remote sensing and Geographical Information System (GIS) techniques, the paper presents the results of a multitemporal satellite glacier extent mapping and glacier changes by glacier sizes in the Mt. Qomolangma region at the northern slopes of the middle Himalayas over the Tibetan Plateau. Glaciers in this region have both retreated and advanced in the past 35 years, with retreat dominating. The glacier retreat area was 3.23 km2 (or 0.75 km2 yr-1) during 1974 and 1976, 8.68 km2 (or 0.36 km2 yr-1) during 1976 and 1992, 1.44 km2 (or 0.12 km2 yr-1) during 1992-2000. 1.14 km2 (or 0.22 km2 yr-1) during 2000-2003, and 0.52 km2 (or 0.07 km2 yr-1) during 2003-2008, respectively. While supra-glacier lakes on the debris-terminus of the Rongbuk Glacier were enlarged dramatically at the same time, from 0.05 km2 in 1974 increased to 0.71 km2 in 2008, which was more than 13 times larger in the last 35 years. In addition, glacier changes also showed spatial differences, for example, glacier retreat rate was the fastest at glacier termini between 5400 and 5700 m a.s.l than at other elevations. The result also shows that glaciers in the middle Himalayas retreat almost at a same pace with those in the western Himalayas

    The Different Factors Driving SOC Stability under Different N Addition Durations in a <i>Phyllostachys edulis</i> Forest

    No full text
    As one of the most widespread driving forces in the world, atmospheric nitrogen (N) deposition can significantly alter the carbon cycling of ecosystems. In order to understand how N deposition regulates soil organic carbon (SOC) dynamics and its underlying mechanisms, a 7-year N addition experiment was set in a Phyllostachys edulis forest with three N addition levels (+0, +20, and +80 kg N hm−2 year−1) to evaluate the effects of N addition on the concentration and stability of SOC fractions in the third, fifth, and seventh years. The results are as follows: (1) short-term (third year) N addition markedly increased SOC stability by decreasing the concentration of particulate organic carbon (POC) and increasing the mineral-associated organic carbon (MAOC); longer duration of N addition (5 and 7 years) had an insignificant effect on SOC stability and fractions, suggesting that the effects of N deposition on the SOC stability varied under different duration regimes; (2) N addition did not significantly affect microbial community composition while increasing the ratio of fungi to bacteria (F:B) in the seventh year, and microbial biomass carbon (MBC) and carbon use efficiency (CUE) were significantly increased in the short-term (third year) high N addition regime and enzyme activity was significantly increased in the seventh years’ high N addition regime; (3) variation partitioning analysis and multiple regression analysis showed that SOC fractions are mainly regulated by CUE and MBC under short-term N addition, while enzyme activity was mainly regulated under the longer duration of N addition. Our results show that SOC stability was more sensitive in the short term, and the role of microbial characteristics varied under different N addition durations in the P. edulis forests. Overall, our findings provide a new perspective for the responses of the SOC pool to N deposition and contribute to predicting SOC dynamics in terrestrial ecosystems under future climate change
    • …
    corecore