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Abstract Compared to conventional cancer treatment, combination therapy based on well-designed
nanoscale platforms may offer an opportunity to eliminate tumors and reduce recurrence and metastasis.
In this study, we prepared multifunctional microspheres loading 131I-labeled hollow copper sulfide
nanoparticles and paclitaxel (131I-HCuSNPs-MS-PTX) for imaging and therapeutics of W256/B breast
tumors in rats. 18F-fluordeoxyglucose (18F-FDG) positron emission tomography/computed tomography
(PET/CT) imaging detected that the expansion of the tumor volume was delayed (Po0.05) following
intra-tumoral (i.t.) injection with 131I-HCuSNPs-MS-PTX plus near-infrared (NIR) irradiation. The
immunohistochemical analysis further confirmed the anti-tumor effect. The single photon emission
computed tomography (SPECT)/photoacoustic imaging mediated by 131I-HCuSNPs-MS-PTX demon-
strated that microspheres were mainly distributed in the tumors with a relatively low distribution in other
organs. Our results revealed that 131I-HCuSNPs-MS-PTX offered combined photothermal, chemo- and
radio-therapies, eliminating tumors at a relatively low dose, as well as allowing SPECT/CT and
photoacoustic imaging monitoring of distribution of the injected agents non-invasively. The copper
sulfide-loaded microspheres, 131I-HCuSNPs-MS-PTX, can serve as a versatile theranostic agent in an
orthotopic breast cancer model.

& 2018 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical
Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Breast cancer is one of the most common cancers affecting women
worldwide1,2. In 2017, about 63,410 cases of female breast
carcinoma in situ are predicted to be diagnosed in the United
States3. In the clinic, surgery, radiotherapy and adjuvant che-
motherapeutic agents are mostly used to eliminate the primary
breast tumor while hormonal therapy and cytotoxic chemotherapy
are the main systemic interventions for recurrence or distant
metastasis4,5. However, these treatments may still result in limited
therapeutic efficacy due to drug resistance or adverse effects. Even
worse, insufficient treatment may accelerate the growth of
tumor6,7. Therefore, it is imperative to develop more effective
therapeutic strategies and combination therapy protocols.

With the development of nanomaterial with intense photother-
mal coupling effects, nanoparticle-enhanced near-infrared (NIR)
laser-induced photothermal therapy (PTT) appears to be a promis-
ing strategy for cancer treatment in preclinical studies8–10.
Additionally, these nanomaterials can provide multimodalities in
cancer diagnosis and therapeutics, including drug delivery11,12,
photoacoustic imaging13,14, and positron emission tomography/
computed tomography (PET/CT) imaging15,16. It is attractive to
design a multifunctional delivery platform that combines
all these theranostic modalities in order to synergize the therapeu-
tic efficacy, monitor the therapeutics and achieve accurate
therapeutics, eventually be developed as a personalized
nanomedicine.

Copper sulfide nanoparticles (CuS), with excellent optical and
electrical properties have attracted increasing attention17,18. They
serve as a promising platform for controlled drug release11,
photoacoustic imaging19,20, PET/CT imaging21,22 and radiother-
apy23. Compared with most widely used photothermal agents,
including metallic nanomaterials such as gold nanoparticles, CuS
nanoparticles have several advantages. Firstly, CuS nanoparticles
are considered biodegradable inorganic nanomaterials11,24,25.
Secondly, the absorption wavelength of CuS nanoparticles is not
affected by the solvent or the surrounding environment26. Thirdly,
the cost of production for CuS nanoparticles is much lower.

In this study, we synthesized hollow copper sulfide nanoparticle
microspheres (HCuSNPs-MS), loaded it with paclitaxel (PTX) and
labeled with radioiodine-131 (131I). These microspheres were
applied to photothermal therapy, chemotherapy, radiotherapy,
photoacoustic imaging, and single photon emission computed
tomography/computed tomography (SPECT/CT) imaging in one
single setting (Fig. 1). The distribution of the microspheres was
imaged via 131I-HCuSNPs-MS-PTX-mediated SPECT/CT and
photoacoustic imaging. We hypothesized that 131I-HCuSNPs-
MS-PTX, as a combinatorial regimen, could improve the ther-
apeutic efficacy and provide a real-time distribution of the micro-
spheres in rats bearing an orthotopic breast cancer model.

2. Materials and methods

2.1. Synthesis and characterization of HCuSNPs-MS-PTX

HCuSNPs were prepared by the previously published method27.
Non-radioactive iodine-labeled HCuSNPs (I-HCuSNPs) were
synthesized by incubating HCuSNPs with sodium iodide (NaI)
and sodium perchlorate solution (NaClO4) at 32 °C for 30 min.
The microspheres containing PTX and HCuSNPs were synthe-
sized as follows: HCuSNPs (200 μL, 2.55 mg) were mixed with
dichloromethane (2 mL) containing 100 mg of PLGA (Cupertino,
USA, lactide:glycolide¼50:50, viscosity¼0.55–0.75 dL/g) and
5 mg of PTX (Melone Pharmaceutic, Dalian, China) with stirring
at room temperature. They were then added into 2% PVA solution
(Aladdin, Shanghai, China), and homogenized at 25,000 rpm for
30 s to form a w1/o/w2 multiple emulsion using magnetic stirrer.
The w1/o/w2 multiple emulsion was added into 0.5% PVA
solution and stirred at 1000 rpm for 3 h by magnetic stirrer. The
microspheres then were purified by centrifugation at 3214 × g for
5 min and stored at 4 °C until use.

Transmission electron microscopy (TEM, VEGA TS5136MM,
TESCAN s.r.o., Brno, Czech Republic) and scanning electron
microscopy (SEM, Tecnai G2 20 TWIN, FEI company, Hillsboro,
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USA) were used to observe the morphology of HCuSNPs,
I-HCuSNPs, HCuSNPs-MS, I-HCuSNPs-MS, HCuSNPs-MS-
PTX and I-HCuSNPs-MS-PTX, respectively. The optical proper-
ties of the HCuSNPs and I-HCuSNPs were recorded with a UV-
2401PC UV/Vis spectrophotometer (Shimadzu, Japan). Malvern
Matersizer 3000 and Malvern Zetasizer Nano-90 were used to
determine the size distribution of HCuSNPs, I-HCuSNPs,
I-HCuSNPs-MS-PTX, HCuSNPs-MS-PTX, HCuSNPs-MS and
I-HCuSNPs-MS, respectively.

2.2. Photothermal effect of HCuSNPs-MS-PTX

To investigate the temperature change mediated by HCuSNPs-MS
in vitro, a 915-nm NIR laser (MDL-III-915R, CNI, Changchun,
China) was used. NIR laser light (0.5W/cm2, 10 min) was passed
through a quartz cuvette containing a HCuSNPs PBS solution
(1 mg/mL, 200 μL), HCuSNPs-MS PBS solution (1 mg/mL of
HCuSNPs, 200 μL) or a PBS solution (200 μL). During the laser
exposure, a thermocouple was inserted into the solution to record
the temperature change.

2.3. Drug release of HCuSNPs-MS-PTX

In the study of long-term release of PTX from HCuSNPs-MS-
PTX, a solution of HCuSNPs-MS-PTX (200 µL, 0.46 mg/mL,
containing 2.285 µg/mL of PTX) containing 0.5% Tween 80 was
aspirated and then placed into an EP vial in a 37 °C water bath. At
various times three vials were centrifuged at 13,523 × g for
10 min, and the free PTX was quantified by a high performance
liquid chromatography (HPLC) system (LC-20AR, Shimadzu,
Japan) with an SPD-M20AV photodiode array detector (Shi-
madzu, Japan).

The NIR-light-triggered release of PTX was investigated with
two samples, which were HCuSNPs-MS-PTX precipitate (10 mg)
and a PTX-MS precipitate suspended with PBS (0.01 mol/L,
200 μL, pH 7.4) containing Tween 80 (0.5%, w/v). The two
samples were exposed to 915-nm NIR laser light at a power
density of 0.5W/cm2 for 3 min. The above procedure was repeated
three times and the solution was centrifuged at 3214 × g for 5 min
to obtain the supernatant fraction for free PTX determination. The
HCuSNPs-MS-PTX solution that did not receive laser irradiation
was used as control.

2.4. Radiolabeling of HCuSNPs-MS-PTX

For the radiolabeling procedures, Na131I (200 μL, 37MBq) was
added to HCuSNPs-MS-PTX (200 μL, 50 mg/mL, containing
0.5 mg of PTX and 0.2 mg of HCuSNPs), and then sodium
perchlorate solution (NaClO4) (800 μL, 0.1 mol/L) (Sigma, St

Louis, MO, USA) was added with stirring. The mixture was
incubated at 32 °C for 30 min. Once the reaction finished,
deionized water (1 mL) was added and the sample centrifuged at
67 × g for 10 min to rinse free Na131I. After removing the
supernatants, saline (30 μL) was added to yield the final product,
131I-HCuSNPs-MS-PTX. The radiolabeling yield was analyzed
using thin-layer chromatography (TLC). The Whatman No. 1 filter
paper was developed with deionized water.28 A gamma counter
(SN-697, Shanghai Institute of nuclear research, Rihuan Instru-
ment Factory, Shanghai, China) was used to quantify the radio-
activity. The radiolabeling yield was expressed as percentage of
radioactivity of 131I-HCuSNPs-MS-PTX relative to all radioiodine
activity. For the study of radiolabeling stability, 131I-HCuSNPs-
MS-PTX was suspended in saline or 10% fetal bovine serum
(FBS) and then the radiolabeling yield was measured at 30 min, 1,
2, 4, 8, 12, 24, 48 and 72 h, respectively.

2.5. Animal preparation

All the animal experimental procedures were in accordance with
Ren Ji Institutional Animal Care. Female Sprague–Dawley rats,
weight 200–250 g, were purchased from the Ren Ji Hospital
Experimental Animal Center, China. Rats were housed in specific
pathogen-free conditions at the laboratory animal center. To
produce the orthotopic breast cancer model, W256/B cells
(100 μL, 5×106 cells) were injected into the second mammary
fat pad. When the tumor size reached 5–6 mm, the rats were ready
for the experiment.

2.6. Anti-tumor activity and histopathologic evaluation

To evaluate the combinatorial therapeutic efficacy, rats were
randomly assigned to 6 groups (A–F, n¼4 in each group) as
follows and received intra-tumoral (i.t.) injection according to the
design (Fig. 2). Group A rats were injected with normal saline
(control group, 30 μL). Group B rats were injected with 131I-
HCuSNPs-MS-PTX plus laser exposure (10 mg, 30 μL, containing
0.5 mg of PTX, 0.2 mg of HCuSNPs and 3073MBq of 131I).
Group C rats were injected with 131I-HCuSNPs-MS-PTX (10 mg,
30 μL, containing 0.5 mg of PTX, 0.2 mg of HCuSNPs and
3073MBq of 131I). Group D rats were injected with HCuSNPs-
MS-PTX plus laser exposure (10 mg, 30 μL, containing 0.5 mg of
PTX and 0.2 mg of HCuSNPs). Group E rats were injected with
131I-HCuSNPs-MS plus laser exposure (10 mg, 30 μL, containing
0.2 mg of HCuSNPs and 3073MBq of 131I). Group F rats were
injected with 131I-HCuSNPs-MS (10 mg, 30 μL, containing 0.2 mg
of HCuSNPs and 3073MBq of 131I). The groups with laser
treatment were exposed to a 915-nm NIR laser at a power density
of 0.5W/cm2 for 3 min immediately after i.t. injection. The
temperature change of tumors within 4 min in each group was
monitored by an infrared thermal imaging camera (DT-980, CEM,
Shanghai, China) during laser irradiation.

After an 18F-FDG micro PET/CT scan at 7 day-post treatment
the tumors of each rats were collected and cryosectioned for
hematoxylin and eosin (H&E) staining as well as Ki-67 (Novus,
USA) and terminal deoxynucleotidyl transferase (TdT)-mediated
dUTP nick end-labeling (TUNEL)/DAPI staining (Yeasen, China)
according to the manufacturer's protocols. TUNEL-stained slides
were observed under a fluorescence microscope (Zeiss Axio
Observer.Z1, Germany). The major organs (liver, kidney and

Figure 1 Scheme of 131I-HCuSNPs-MS-PTX.
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spleen) of rats that treated with 131I-HCuSNPs-MS-PTX plus laser
exposure were collected for H&E staining to investigate the
toxicity.

2.7. 18F-FDG micro PET/CT imaging

18F-FDG micro PET/CT imaging was acquired using a PET/CT
scanner (Super Nova® PET/CT, PINGSENG, Shanghai, China),
which has a PET spatial resolution of approximately 0.6 mm and a

CT resolution of 0.2 mm, before treatment and at 1, 2, 4 and 7 day
after i.t. injection. Tumor-bearing rats were anesthetized with
isoflurane (2% in oxygen) and placed prone. A 30-min PET/CT
scan was performed at 1 h after 18F-FDG (0.3 mL, 37MBq) i.t.
injection. For data analysis, the region of interest for the
tumor was drawn on CT and then copied to PET using Avatar
1.2 software (Pingseng, China). The length (a) and width (b)
of the tumor, maximum standard uptake values (SUVmax)
were determined. Tumor volume (mm3)29 was presented as 0.5
× a × b2.

Figure 3 (A) Transmission electron microscopic image of HCuSNPs. (B) Absorption spectra of HCuSNPs. (C) Diameter distribution of
HCuSNPs samples determined by dynamic light-scattering measurements. (D) Scanning electron microscopic image of HCuSNPs-MS-PTX.
(E) Size distribution of HCuSNPs-MS-PTX. (F) Temperature–time profiles of HCuSNPs-MS in aqueous suspension (1 mg/mL of HCuSNPs),
HCuSNPs solution (1 mg/mL of HCuSNPs), or PBS under NIR laser irradiation (915 nm, 0.5W/cm2). (G) Cumulative release of PTX from
HCuSNPs-MS-PTX over time. (H) NIR-light-triggered release of PTX from HCuSNPs-MS-PTX (2.5 mg/mL of PTX). NIR laser light (915 nm,
0.5W/cm2, 3 min). Red arrows indicate laser switched on. Data are presented as Mean7SD (n¼3).

Figure 2 Scheme of the experimental design of the anti-cancer treatment in rats bearing orthotopic breast tumor. i.t. injection, intra-tumoral
injection.
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2.8. SPECT/CT and photoacoustic imaging

The tumor-bearing rats that received i.t. injection of 131I-
HCuSNPs-MS-PTX (10 mg, 30 μL, containing 0.5 mg of PTX,
0.2 mg of HCuSNPs and 3073MBq of 131I) plus laser exposure
underwent SPECT/CT imaging at 30 min, 24, 48 and 96 h,
respectively. To minimize thyroid uptake of free 131I, all rats were
given water containing 0.12% of potassium iodide for 5 days
before SPECT/CT imaging. SPECT/CT scans were performed on
SPECT/CT system (Precedence 6, Philip, Netherlands). CT scans
were performed first (using a 120 kV energy tube at 240 mA and
1 mm per scan), followed by the SPECT acquisition (128 × 128
matrix, 30 frames), which were performed by 6° angular steps in a
25 s per frame.

Another three rats bearing orthotopic breast tumors received i.t.
administration of 131I-HCuSNPs-MS-PTX (10 mg, 30 μL, contain-
ing 0.5 mg of PTX, 0.2 mg of HCuSNPs and 3073MBq of 131I)
underwent photoacoustic imaging. Bubble-free, clear ultrasound
gel was used to facilitate acoustic contact between the transducer
and the tumor. Image acquisition was conducted using a Vevo
2100 ultrasound/PA scanner with LZ400 PA probe (30MHz linear
acoustic array transducer, VisualSonics Inc., Toronto, Canada).
The photoacoustic scans were conducted before and at 1, 4, and
24 h after i.t. injection, respectively. The rats were anesthetized
with isoflurane during the scan. We applied several laser wave-
lengths, such as 750, 810, 850, 855, 895 and 915 nm for in vivo
photoacoustic scan. A spectroscopically separated multiplexer was
used to analyze the data with Vevo LAB (Ver 1.7.2) workstation
software.

2.9. Statistical analysis

Quantitative data analysis is described as the mean7standard
deviations (SD). Differences in tumor volume and SUVmax values
on day 7 between different groups were analyzed using one-way
analysis of variance (ANOVA) followed by least-significant
difference (LSD) posthoc multiple comparison tests (SPSS 22.0,
USA). A P value o0.05 was considered statistically significant. A
Po0.001 was considered highly significant.

3. Results

3.1. Characterization of the microsphere

TEM images demonstrated that HCuSNPs were relatively uniform
in size, with the average diameter about 191.7 nm (Fig. 3A–B).

The HCuSNPs had a strong absorption band in the NIR region
(peaked at ~900 nm, Fig. 3C). SEM images revealed the near-
spherical morphology of HCuSNPs-MS-PTX, which had an
average size of 9.84 μm (Fig. 3D–E). Additionally, compared
with HCuSNPs, I-HCuSNPs had the similar diameter and the UV–
vis spectrum of I-HCuSNPs was improved (Supplementary
information Fig. S1). From the result, we found that there was
no difference between I-HCuSNPs-MS-PTX, HCuSNPs-MS-PTX,
HCuSNPs-MS and I-HCuSNPs-MS in size distribution
(Supplementary information Fig. S1), indicating that the labeling
process did not affect the characteristics of HCuSNPs-MS-PTX.
PTX was loaded into PLGA microspheres with the encapsulation
efficiency (EE) close to 100%. The HCuSNPs loading efficiency in
the microspheres was 2.1370.2% (Table 1). Exposed to NIR light
exposure (0.5W/cm2) for 10 min, the temperature of HCuSNPs-
MS PBS suspension (50 mg/mL of HCuSNPs-MS containing
1 mg/mL of HCuSNPs) increased from 26.4 °C to 56.1 °C
(ΔT¼29.7 °C, Fig. 3F). In comparison, no significant temperature
change was observed in PBS following laser irradiation. There was
no significant difference in temperature elevation between
HCuSNPs suspensions and HCuSNPs-MS suspensions containing
the same concentration of HCuSNPs (P¼0.982, P40.05), indi-
cating that encapsulation of HCuSNPs into the PLGA micro-
spheres did not affect the photothermal activity of HCuSNPs.

Fig. 3G showed that HCuSNPs-MS-PTX could provide a
sustained and slow release of PTX, with a cumulative release of
7.5970.15% at day 1 and 41.7571.02% at day 14, respectively.
This result indicated that the microspheres had the property of

Table 1 Formulation of the microspheres.

Formulation Microsphere HCuSNPs
loading (%,
w/w)

EE of PTX
loading (%)

A HCuSNPs-
MS-PTX

2.1370.20 99.3470.10

B PTX-MS − 98.170.11
C HCuSNPs-

MS
2.2070.15 −

–Not applicable.

Figure 4 (A) In vivo thermal imaging of rats bearing orthotopic
breast tumors after i.t. injection with different formulations with or
without laser irradiation. (B) Temperature-time profiles of tumors
following different treatments (915 nm, 0.5W/cm2, 3 min). Red arrows
indicate laser switched on.
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prolonged drug release. NIR laser (0.5W/cm2, 3 min) at 915 nm
can trigger the rapid release of PTX from HCuSNPs-MS-PTX
(Fig. 3H). After the first laser exposure (0.5W/cm2, 3 min), the
cumulative release of PTX increased from 0.6% to 3.29%. During
the subsequent 1.5-h interval without laser, only 0.33% of PTX
(from 3.29% to 3.62%) was released. The second and third laser
irradiation cycles induced 2.62% and 2.7% of PTX release,
respectively. In contrast, less than 0.4% of PTX was released
over the entire experimental period without laser irradiation
(Fig. 3H). The HCuSNPs-MS-PTX (containing 0.2 mg of
HCuSNPs) were labeled with 131I through Cu-I interaction. TLC
confirmed the radiolabeling yield of 131I-HCuSNPs-MS-PTX was
as high as 95.871.3%. The radiolabeling efficacy of 131I-
HCuSNPs-MS-PTX in saline remained at about 81.04% at 72 h
and the serum stability of 131I-HCuSNPs-MS-PTX decreased to
67.5% due to some deiodination.

Infrared thermography recorded the temperature changes of
tumor mediated by the photothermal effects of 131I-HCuSNPs-MS-
PTX in vivo. Fig. 4 indicated that the temperature of tumors
increased from 30 to 45 °C within 3 min. In comparison, there was
no change of temperature detected in the tumors without laser
irradiation.

3.2. Therapeutic effect in vivo

18F-FDG micro PET/CT was used to monitor the therapeutic effect
of
131I-HCuSNPs-MS-PTX in an orthotopic breast cancer model.
Representative micro PET/CT images showed the changes of
different groups before and after the treatment (Fig. 5A). We found
that the maximum standard uptake value (SUVmax) of

18F-FDG in
the control group continued to increase, while in rats treated with
131I-HCuSNPs-MS-PTX plus laser treatment, 18F-FDG uptakes
decreased over time and reached a relatively low SUVmax when
compared with other groups at day 7 (Fig. 5A). In other treatment
groups, low 18F-FDG uptake areas were mainly located in the
central regions of the tumor, while the peripheral tumor tissues still
exhibited high 18F-FDG uptake during the treatment.

Fig. 5B shows the tumor growth curves of the six groups.
Before treatment, tumor volumes were not significantly different
between groups (P40.05). The control group (Group A) showed a
time-dependent increase in tumor volume from 95.04715.90 mm3

(day 0) to 888.647108.66 mm3 (day 7, P¼0.0008, Po0.05).
Compared with the control group, tumor growth was delayed for
rats that were treated with 131I-HCuSNPs-MS-PTX plus laser

Figure 5 (A) Representative 18F-FDG micro PET/CT images of rats bearing orthotopic breast tumors following different treatments. (B) Tumor
volume of different groups at different time points. Arrows, tumors. (C) Tumor SUVmax of different treatment groups at different time-points.
SUVmax, maximum standard uptake value. ***Po0.001, significant difference in values between the two groups on day 7. Data are presented as
Mean7SD (n¼4).

Qiufang Liu et al.376



exposure, and the tumor volume decreased from
98.16714.36 mm3 at day 0 to 36.9272.3 mm3 at day 7
(P¼0.005, Po0.05). Other treatment groups showed intermediate
reductions in tumor growth rates in the first several days but there
was no significant difference at day 7 when compared with the
untreated control group (Fig. 5B). Similar findings were observed
in SUVmax changes (Fig. 5C). The SUVmax of tumors that were
treated with 131I-HCuSNPs-MS-PTX plus laser exposure
decreased from 7.4771.24 to 2.0270.22 (P¼0.002, Po0.05),
but increased in the control group from 6.8271.22 to 14.2670.54
(P¼0.002, Po0.05) by 7 days. In other treatment groups,
SUVmax decreased within 1 day but increased at 7 days post-
treatment.

The results of H&E staining, TUNEL and immunohistochemical
staining for Ki-67 were in agreement with the 18F-FDG PET/CT
results, validating that 18F-FDG PET/CT imaging was an accurate
and non-invasive method to monitor tumor therapeutic responses.
By H&E staining, tumor cells of control group (group A) displayed
pleomorphism, with increases in nucleus/plasma ratios. By contrast,
the tumors that were treated with 131I-HCuSNPs-MS-PTX and laser

exposure (group B) demonstrated remarkable degenerative and
necrotic changes. The nodule mainly consisted of fibroblasts,
histocytes, and lymphoplasmocytes, which surrounded a small
focus of tumor cells (Fig. 6). The tumors of the control group
(group A) demonstrated much higher expression of Ki-67 than
tumors treated with 131I-HCuSNPs-MS-PTX plus laser exposure. In
other treatment groups, the necrosis mainly was located in the center
of the tumor while viable tissues remained in periphery. Similarly,
Ki-67 was expressed in the periphery of the tumors (Fig. 6).
TUNEL staining revealed that there were more apoptotic cells in
rats treated with 131I-HCuSNPs-MS-PTX plus laser exposure than
in other groups (Fig. 6). The H&E staining of liver, kidney and
spleen did not show any obvious abnormalities, such as inflamma-
tion or lesions (Supplementary information Fig. S2).

3.3. SPECT/CT and photoacoustic imaging

SPECT/CT imaging revealed that 131I-HCuSNPs-MS-PTX was
mainly distributed to the tumors with a relatively low distribution

Figure 6 Rats bearing orthotopic breast tumors received i.t. injections of saline or different formulations with or without laser treatment (0.5W/
cm2, 3 min, 915 nm). H&E staining, Ki-67 immunostaining and terminal dexynucleotidyl transferase (TdT)-mediated dUTP nick end labeling
(TUNEL) staining of tumor at 7 days post-treatment. Yellow arrow, cells overexpressing of ki-67. Yellow arrow, Ki-67 positive cells. Green
fluorescent, TUNEL-positive apoptotic cells; blue fluorescent, 4′,6-diamidino-2-phenylindole (DAPI)-stained nuclei. Bar, 100 μm.
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to other organs (Fig. 7A). The intensity of radioactivity that
accumulated in tumors decreased substantially within 72 h after
injection. Fig. 7B showed representative photoacoustic images of
rats that were treated with 131I-HCuSNPs-MS-PTX and laser
exposure, before and after i.t. injection, respectively. The contour
of the tumor region is clearly seen in the photoacoustic images.
Most HCuSNPs-MS-PTX was located in the periphery of the
tumors. The photoacoustic signal intensities in treated tumors,
before and at 1, 4, and 24 h postinjection were 0.0170.05 a.u.,
1.4170.12 a.u., 0.6170.02 a.u. and 0.4270.02 a.u., respectively,
indicating that the signal intensity decreased over time. In addition,
photoacoustic scans also demonstrated that both hemoglobin and
HCuSNPs-MS-PTX were detected in the periphery of tumors
(Fig. 7B). As hemoglobin is usually purely intravascular, we
inferred that 131I-HCuSNPs-MS-PTX was mainly distributed in
perivascular tumor tissue.

4. Discussion

In this study, we successfully loaded PTX and HCuSNPs into
PLGA microspheres, radiolabeled with 131I and tested their
efficacy in the inhibition of the growth of tumors in rats bearing
an orthotopic breast cancer model. In order to investigate the
combined effect of these agents, the loaded dose of PTX and 131I
in the 131I-HCuSNPs-MS-PTX microspheres was less than the
corresponding effective dose of monotherapy using either PTX or
131I. The result demonstrated that the combinatorial regiment 131I-
HCuSNPs-MS-PTX could eliminate W256/B tumors at a relatively
low dose. Combinatorial treatment has been reported to provide a
more powerful strategy to eliminate tumor tissues30,31. Compared
with the widely reported “chemo-phototherapy”32,33, we used a

radio-chemo-phototherapy strategy by labeling the nanoparticles
with 131I. Since the range in tissue of the 131I-beta rays is
approximately 2 mm34, they can kill the peripheral tumor cells
that PTX or photothermal therapy may not reach. Moreover, 131I-
gama rays can offer SPECT/CT imaging to detect the distribution
of the microspheres.

It was noticed that the photothermal effect in our study (at most
45 °C) was mild in comparison with the temperature reported by
other studies (e.g., over 50 °C) for tumor cell necrosis35,36. Tumor
temperatures above 45 °C leads to cellular injury or death due to
protein denaturation37. The relatively mild photothermal heating
(43–45 °C) induced by the shorter exposure time and the lower
NIR power used here minimized normal cell death. Moreover,
hyperthermia could sensitize the tumor cells to the chemother-
apeutic agents38,39.

From the 18F-FDG PET/CT results we found that in groups with
one or two therapeutic modals, tumoral 18F-FDG uptakes
decreased when compared with the control group on day 4 post-
injection. However, necrotic areas may have developed in the
central and relatively high-metabolizing areas remaining in the
peripheral tumor tissues where the chemotherapy or photothermal
therapy did not reach during the period of early treatment, which
induced a recurrence on day 7. By comparison, in rats treated with
131I-HCuSNPs-MS-PTX plus laser irradiation the effects of treat-
ment were most pronounced. A complete inhibition of tumor
growth was achieved as a result of the combined effects of
chemotherapy, photothermal therapy, and radiotherapy. The com-
bination of three modality treatments in a single setting reduced
the dosage of each individual therapy and decreased adverse
effects accordingly. Compared with multifunctional radiolabeled
nanoparticles, such as CCPM-177Lu40 and 198AuNP-EGCg41, 131I-
HCuSNPs-MS-PTX can also serve as SPECT/CT and

Figure 7 (A) SPECT/CT scans of rats bearing orthotopic breast tumors after i.t. injections of 131I-HCuSNPs-MS-PTX (10 mg, 30 μL, containing
0.5 mg of PTX, 0.2 mg of HCuSNPs and 3073MBq of 131I). (B) Photoacoustic images of rats bearing orthotopic breast tumors before and after i.
t. injections of HCuSNPs-MS-PTX (10 mg). Upper row, photoacoustic-mode imaging. Lower row, hemoglobin map of the tumor. Green, intensity
of photoacoustic signals from HCuSNPs-MS-PTX. Red, intensity of photoacoustic signals from hemoglobin. Yellow arrow, standard sample
(3MBq, radiotracer solution containing 10% of the injection dose).
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photoacoustic contrast agents, allowing real-time detecting of the
biodistribution and accumulation of the microspheres in vivo non-
invasively. The SPECT/CT imaging offered high sensitivity
tracking of 131I-HCuSNPs-MS-PTX in vivo, allowing precise laser
irradiation. It was demonstrated that the sustained radiation
therapy was largely confined to tumors, with minimal damage to
healthy surrounding tissue or other organs. Moreover, photoa-
coustic imaging provided useful information regarding the dis-
tribution of microspheres inside the tumor.

Due to the size of microspheres, they may not be appropriate for
targeted delivery. However, our versatile molecular loading plat-
form, with combined radio- and chemotherapeutic components,
appears to be promising for local/regional therapy, such as
brachytherapy and transcatheter arterial chemoembolization
(TACE). Currently, localized radiotherapy with isotopes is a
treatment option for many unresectable solid tumors, for example
prostate cancer. However, in the clinic the implantation of
millimeter size brachytherapy seeds may cause many adverse side
effects or severe clinical complications, which greatly limits its
applications42,43. Nanomedicine brachytherapy has been applied to
breast cancer, prostate cancer, and glioblastoma cancer, with less
severe liver, spleen or kidney toxicity44–46. Yook et al.44 have
reported that 177Lu-labeled gold nanoparticles can serve as a novel
neoadjuvant brachytherapy for locally advanced breast cancer.
Compared with 177Lu-labeled gold nanoparticles, our agent has
several advantages. Firstly, apart from radiotherapy, 131I-
HCuSNPs-MS-PTX allowed a controlled drug release over a long
term, which has great potential in improving therapeutic efficacy.
Secondly, HCuSNPs-MS-PTX can be labeled with iodine-125
(125I) as the method of labeling with 131I. The radiolabeling
process is straightforward and the radioisotope 131I and 125I are
widely used in clinic and are easier to produce than 177Lu47,48.
Therefore, our multifunctional agent is a promising candidate to
eliminate unresectable solid tumor tissues due to the synergistic
effect. Additionally, because the size of 131I-HCuSNPs-MS-PTX is
controllable, we can also synthesis the microspheres with an
appropriate size for transcatheter arterial chemoembolization to
treat hepatocellular carcinoma.

5. Conclusion

Our study confirmed that hollow copper sulfide-loaded micro-
spheres, 131I-HCuSNPs-MS-PTX, could serve as a versatile
theranostic agent in an orthotopic rat breast cancer model. The
combination of photothermal, chemo- and radio-therapies in a
single setting can help to eradicate the tumor completely and
reduce the effective dose of monotherapy and decrease side effects
accordingly. Simultaneously, SPECT/CT and photoacoustic ima-
ging mediated by 131I-HCuSNPs-MS-PTX can intuitively monitor
the distribution of the injected agents in vivo.
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