2,308 research outputs found

    An Embedded Enhanced-Boost Z-Source Inverter

    Get PDF

    Stability and superconductivity of freestanding two-dimensional transition metal boridene: M4/3B2

    Full text link
    The small atomic mass of boron indicates strong electron-phonon coupling, so it may have a brilliant performance in superconductivity. Recently, a new 2D boride sheet with ordered metal vacancies and surface terminals (Mo4/3B2-x) was realized in experiments (Science 2021, 373, 801). Here, the 2D monolayer freestanding Mo4/3B2is evidenced to be thermodynamically stable. Through electronic structure, phonon spectrum and electron-phonon coupling, monolayer Mo4/3B2 is found to be an intrinsic phonon-mediated superconductor. The superconducting transition temperature (Tc) is determined to be 4.06 K by the McMillian-Allen-Dynes formula. Remarkably, the Tc of monolayer Mo4/3B2 can be increased to 6.78 K with an appropriate biaxial tensile strain (+5%). Moreover, we predict that other transition metal replacing Mo atoms is also stable and retaining the superconductivity. Such as monolayer W4/3B2 is also a superconductor with the Tc of 2.37 K. Our research results enrich the database of 2D monolayer superconductors and boron-related formed materials science

    Elevation of Inducible Nitric Oxide Synthase and Cyclooxygenase-2 Expression in the Mouse Brain after Chronic Nonylphenol Exposure

    Get PDF
    The present study was performed to investigate the effects of chronic administration of nonylphenol (NP) on the expression of inflammation-related genes in the brains of mice. NP was given orally by gavages at 0, 50, 100, and 200 mg/kg/d. The expression of inflammatory enzymes, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), was evaluated by immunohistochemistry and immunoblotting assays. The nitric oxide (NO) level and nitric oxide synthase (NOS) activity were also measured by biochemical analyses. The results showed that NP at a high dose (200 mg/kg/d) significantly increased the expression of iNOS and COX-2 in both the hippocampus and cortex. In parallel with the increase in iNOS expression, the NO level was significantly greater at the dose of 200 mg/kg/d, compared to the control. The activity of NOS was also increased in the brain of mice at the dose of 100 and 200 mg/kg/d. These findings demonstrate that NP may have the potential to induce the chronic inflammation or cause neurotoxicity in the mouse brain

    The elicitor VP2 from Verticillium dahliae triggers defence response in cotton

    Get PDF
    Summary: Verticillium dahliae is a widespread and destructive soilborne vascular pathogenic fungus that causes serious diseases in dicot plants. Here, comparative transcriptome analysis showed that the number of genes upregulated in defoliating pathotype V991 was significantly higher than in the non‐defoliating pathotype 1cd3‐2 during the early response of cotton. Combined with analysis of the secretome during the V991–cotton interaction, an elicitor VP2 was identified, which was highly upregulated at the early stage of V991 invasion, but was barely expressed during the 1cd3‐2‐cotton interaction. Full‐length VP2 could induce cell death in several plant species, and which was dependent on NbBAK1 but not on NbSOBIR1 in N. benthamiana. Knock‐out of VP2 attenuated the pathogenicity of V991. Furthermore, overexpression of VP2 in cotton enhanced resistance to V. dahliae without causing abnormal plant growth and development. Several genes involved in JA, SA and lignin synthesis were significantly upregulated in VP2‐overexpressing cotton. The contents of JA, SA, and lignin were also significantly higher than in the wild‐type control. In summary, the identified elicitor VP2, recognized by the receptor in the plant membrane, triggers the cotton immune response and enhances disease resistance

    Study of plasmon resonance in a gold nanorod with an LC circuit model

    Full text link
    Gold nanorod has generated great research interest due to its tunable longitudinal plasmon resonance. However, little progress has been made in the understanding of the effect. A major reason is that, except for metallic spheres and ellipsoids, the interaction between light and nanoparticles is generally insoluble. In this paper, a new scheme has been proposed to study the plasmon resonance of gold nanorod, in which the nanorod is modeled as an LC circuit with an inductance and a capacitance. The obtained resonance wavelength is dependent on not only aspect ratio but also rod radius, suggesting the importance of self-inductance and the breakdown of linear scaling. Moreover, the cross sections for light scattering and absorption have been deduced analytically, giving rise to a Lorentzian line-shape for the extinction spectrum. The result provides us with new insight into the phenomenon.Comment: 15 pages, 3 figure

    A simulation study on the measurement of D0-D0bar mixing parameter y at BES-III

    Full text link
    We established a method on measuring the \dzdzb mixing parameter yy for BESIII experiment at the BEPCII e+ee^+e^- collider. In this method, the doubly tagged ψ(3770)D0D0\psi(3770) \to D^0 \overline{D^0} events, with one DD decays to CP-eigenstates and the other DD decays semileptonically, are used to reconstruct the signals. Since this analysis requires good e/πe/\pi separation, a likelihood approach, which combines the dE/dxdE/dx, time of flight and the electromagnetic shower detectors information, is used for particle identification. We estimate the sensitivity of the measurement of yy to be 0.007 based on a 20fb120fb^{-1} fully simulated MC sample.Comment: 6 pages, 7 figure
    corecore