1,074 research outputs found

    A Multi-task Learning Approach for Improving Product Title Compression with User Search Log Data

    Full text link
    It is a challenging and practical research problem to obtain effective compression of lengthy product titles for E-commerce. This is particularly important as more and more users browse mobile E-commerce apps and more merchants make the original product titles redundant and lengthy for Search Engine Optimization. Traditional text summarization approaches often require a large amount of preprocessing costs and do not capture the important issue of conversion rate in E-commerce. This paper proposes a novel multi-task learning approach for improving product title compression with user search log data. In particular, a pointer network-based sequence-to-sequence approach is utilized for title compression with an attentive mechanism as an extractive method and an attentive encoder-decoder approach is utilized for generating user search queries. The encoding parameters (i.e., semantic embedding of original titles) are shared among the two tasks and the attention distributions are jointly optimized. An extensive set of experiments with both human annotated data and online deployment demonstrate the advantage of the proposed research for both compression qualities and online business values.Comment: 8 Pages, accepted at AAAI 201

    Research on Parametric Model for Surface Processing Prediction of Aero-Engine Blades

    Get PDF
    This paper presented a method for establishing a blade surface machining prediction model based on a parametric model. The abrasive grain state of the grinding tool was divided into initial wear stage, stable wear stage and sharp wear stage. Based on this, a parametric prediction model of engine blade surface material removal was established. In this paper, the simulation of blade surface machining was carried out. In this work, the blade was divided into several sections according to the direction from the blade root to the blade tip. A certain curve of the outer contour was fitted with a specific arc to reduce the calculation amount. Through a series of simulation calculations, the expressions of the above parametric prediction model were obtained, and several experiments were carried out to verify the feasibility of the prediction model, and the results were analyzed

    Sample Size Determination for Interval Estimation of the Prevalence of a Sensitive Attribute Under Randomized Response Models

    Get PDF
    © 2022 The Author(s). This article is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.Studies with sensitive questions should include a sufficient number of respondents to adequately address the research interest. While studies with an inadequate number of respondents may not yield significant conclusions, studies with an excess of respondents become wasteful of investigators’ budget. Therefore, it is an important step in survey sampling to determine the required number of participants. In this article, we derive sample size formulas based on confidence interval estimation of prevalence for four randomized response models, namely, the Warner’s randomized response model, unrelated question model, item count technique model and cheater detection model. Specifically, our sample size formulas control, with a given assurance probability, the width of a confidence interval within the planned range. Simulation results demonstrate that all formulas are accurate in terms of empirical coverage probabilities and empirical assurance probabilities. All formulas are illustrated using a real-life application about the use of unethical tactics in negotiation.Peer reviewe

    (E)-N′-[1-(4-Chloro­phen­yl)ethyl­idene]-2-hydroxy­benzohydrazide

    Get PDF
    In the title compound, C15H13ClN2O2, the dihedral angle between the two benzene rings is 7.0 (1)°. An intra­molecular N—H⋯O hydrogen bond is present and inter­molecular O—H⋯O hydrogen bonds link the mol­ecules into chains along [001]

    Theoretical prediction of diffusive ionic current through nanopores under salt gradients

    Full text link
    In charged nanopores, ionic diffusion current reflects the ionic selectivity and ionic permeability of nanopores which determines the performance of osmotic energy conversion, i.e. the output power and efficiency. Here, theoretical predictions of the diffusive currents through cation-selective nanopores have been developed based on the investigation of diffusive ionic transport under salt gradients with simulations. The ionic diffusion current I satisfies a reciprocal relationship with the pore length I correlates with a/L (a is a constant) in long nanopores. a is determined by the cross-sectional areas of diffusion paths for anions and cations inside nanopores which can be described with a quadratic power of the diameter, and the superposition of a quadratic power and a first power of the diameter, respectively. By using effective concentration gradients instead of nominal ones, the deviation caused by the concentration polarization can be effectively avoided in the prediction of ionic diffusion current. With developed equations of effective concentration difference and ionic diffusion current, the diffusion current across nanopores can be well predicted in cases of nanopores longer than 100 nm and without overlapping of electric double layers. Our results can provide a convenient way for the quantitative prediction of ionic diffusion currents under salt gradients

    Asian Women's Perceived Impact of Leadership Characteristics and Skills on their UIUC Campus Life

    Get PDF
    Poster Presentation for EUI Spring 2017 Student Conference, concerning Asian women's perceived impact of leadership skills and characteristics on their UIUC campus life.Ope

    5,6-Dimethyl-1,2,4-triazin-3-amine

    Get PDF
    In the crystal structure of the title compound, C5H8N4, adjacent mol­ecules are connected through N—H⋯N hydrogen bonds, resulting in a zigzag chain along [100]. The amino groups and heterocyclic N atoms are involved in further N—H⋯N hydrogen bonds, forming R 2 2(8) motifs
    corecore