20,882 research outputs found

    Dynamics of composite Haldane spin chains in IPA-CuCl3

    Full text link
    Magnetic excitations in the quasi-one-dimensional antiferromagnet IPA-CuCl3 are studied by cold neutron inelastic scattering. Strongly dispersive gap excitations are observed. Contrary to previously proposed models, the system is best described as an asymmetric quantum spin ladder. The observed spectrum is interpreted in terms of ``composite'' Haldane spin chains. The key difference from actual S=1 chains is a sharp cutoff of the single-magnon spectrum at a certain critical wave vector.Comment: 4 pages 4 figure

    An increase in TcT_c under hydrostatic pressure in the superconducting doped topological insulator Nb0.25_{0.25}Bi2_2Se3_3

    Full text link
    We report an unexpected positive hydrostatic pressure derivative of the superconducting transition temperature in the doped topological insulator \NBS via dcdc SQUID magnetometry in pressures up to 0.6 GPa. This result is contrary to reports on the homologues \CBS and \SBS where smooth suppression of TcT_c is observed. Our results are consistent with recent Ginzburg-Landau theory predictions of a pressure-induced enhancement of TcT_c in the nematic multicomponent EuE_u state proposed to explain observations of rotational symmetry breaking in doped Bi2_2Se3_3 superconductors.Comment: 5 pages, 5 figure

    Low-Rank Eigenvector Compression of Posterior Covariance Matrices for Linear Gaussian Inverse Problems

    Get PDF
    We consider the problem of estimating the uncertainty in statistical inverse problems using Bayesian inference. When the probability density of the noise and the prior are Gaussian, the solution of such a statistical inverse problem is also Gaussian. Therefore, the underlying solution is characterized by the mean and covariance matrix of the posterior probability density. However, the covariance matrix of the posterior probability density is full and large. Hence, the computation of such a matrix is impossible for large dimensional parameter spaces. It is shown that for many ill-posed problems, the Hessian matrix of the data misfit part has low numerical rank and it is therefore possible to perform a low-rank approach to approximate the posterior covariance matrix. For such a low-rank approximation, one needs to solve a forward partial differential equation (PDE) and the adjoint PDE in both space and time. This in turn gives O(nxnt)\mathcal{O}(n_x n_t) complexity for both, computation and storage, where nxn_x is the dimension of the spatial domain and ntn_t is the dimension of the time domain. Such computations and storage demand are infeasible for large problems. To overcome this obstacle, we develop a new approach that utilizes a recently developed low-rank in time algorithm together with the low-rank Hessian method. We reduce both the computational complexity and storage requirement from O(nxnt)\mathcal{O}(n_x n_t) to O(nx+nt)\mathcal{O}(n_x + n_t). We use numerical experiments to illustrate the advantages of our approach

    Small atom diffusion and breakdown of the Stokes–Einstein relation in the supercooled liquid state of the Zr46.7Ti8.3Cu7.5Ni10Be27.5 alloy

    Get PDF
    Be diffusivity data in the bulk metallic glass forming alloy Zr46.7Ti8.3Cu7.5Ni10Be27.5 are reported for temperatures between 530 and 710 K, extending 85 K into the supercooled liquid state of the alloy. At the glass transition temperature Tg, a change in temperature dependence of the data is observed, and above Tg the diffusivity increases more quickly with temperature than below. The data in the supercooled liquid can be described by a modified Arrhenius expression based on a diffusion mechanism suggested earlier. The comparison with viscosity data in the supercooled liquid state of Zr46.7Ti8.3Cu7.5Ni10Be27.5 reveals a breakdown of the Stokes–Einstein relation, indicating a cooperative diffusion mechanism in the supercooled liquid state of Zr46.7Ti8.3Cu7.5Ni10Be27.5

    Valosin-containing protein regulates the proteasome-mediated degradation of DNA-PKcs in glioma cells.

    Get PDF
    DNA-dependent protein kinase (DNA-PK) has an important role in the repair of DNA damage and regulates the radiation sensitivity of glioblastoma cells. The VCP (valosine-containing protein), a chaperone protein that regulates ubiquitin-dependent protein degradation, is phosphorylated by DNA-PK and recruited to DNA double-strand break sites to regulate DNA damage repair. However, it is not clear whether VCP is involved in DNA-PKcs (DNA-PK catalytic subunit) degradation or whether it regulates the radiosensitivity of glioblastoma. Our data demonstrated that DNA-PKcs was ubiquitinated and bound to VCP. VCP knockdown resulted in the accumulation of the DNA-PKcs protein in glioblastoma cells, and the proteasome inhibitor MG132 synergised this increase. As expected, this increase promoted the efficiency of DNA repair in several glioblastoma cell lines; in turn, this enhanced activity decreased the radiation sensitivity and prolonged the survival fraction of glioblastoma cells in vitro. Moreover, the VCP knockdown in glioblastoma cells reduced the survival time of the xenografted mice with radiation treatment relative to the control xenografted glioblastoma mice. In addition, the VCP protein was also downregulated in ~25% of GBM tissues from patients (WHO, grade IV astrocytoma), and the VCP protein level was correlated with patient survival (R(2)=0.5222, P<0.05). These findings demonstrated that VCP regulates DNA-PKcs degradation and increases the sensitivity of GBM cells to radiation
    • …
    corecore