631 research outputs found

    Novel Structure Function for Photon Fragmentation into a Λ\Lambda Hyperon and Transverse Λ\Lambda Polarization in Unpolarized Electron-Positron Annihilation

    Full text link
    The possibility is examined for the inclusive Λ\Lambda in unpolarized electron-positron annihilation to be transversely polarized. Due to final-state interactions, there exists a novel structure function F^(z,Q2)\hat F(z,Q^2) for the inclusive Λ\Lambda hyperon (or any other baryons) production from the unpolarized time-like photon fragmentation, which makes contribution to the transverse Λ\Lambda polarization in the unpolarized electron-positron annihilation.Comment: RevTex, 4 pages, the version appearing in Phys. Rev.

    Measuring the efficiency of Serbian insurance companies

    Get PDF
    The transition period, and the still ongoing economic crisis, amplify the volatility in the domestic insurance market and forces the management of insurance companies to continuously monitor changes in the market, i.e. to identify risks and opportunities, and therefore to undertake certain activities. The focus of the business of insurance companies is based on satisfying the needs of existing and potential clients. Respecting the current situation in the insurance market in anticipation of future events, the management of insurance companies must create and implement the optimal strategy in line with the company’s capabilities. For this purpose it is necessary to measure the efficiency of the business, which is the subject of this paper where the Data Envelopment Analysis (DEA) method is applied to the case of insurance companies operating in Serbia

    Parton model versus color dipole formulation of the Drell-Yan process

    Get PDF
    In the kinematical region where the center of mass energy is much larger than all other scales, the Drell-Yan process can be formulated in the target rest frame in terms of the same color dipole cross section as low Bjorken-x deep inelastic scattering. Since the mechanisms for heavy dilepton production appear very different in the dipole approach and in the conventional parton model, one may wonder whether these two formulations really represent the same physics. We perform a comparison of numerical calculations in the color dipole approach with calculations in the next-to-leading order parton model. For proton-proton scattering, the results are very similar at low x_2 from fixed target to RHIC energies, confirming the close connection between these two very different approaches. We also compare the transverse momentum distributions of Drell-Yan dileptons predicted in both formulations. The range of applicability of the dipole formulation and the impact of future Drell-Yan data from RHIC for determining the color dipole cross section are discussed. A detailed derivation of the dipole formulation of the Drell-Yan process is also included.Comment: 20 pages, 5 figure

    Broken-Symmetry States in Quantum Hall Superlattices

    Full text link
    We argue that broken-symmetry states with either spatially diagonal or spatially off-diagonal order are likely in the quantum Hall regime, for clean multiple quantum well (MQW) systems with small layer separations. We find that for MQW systems, unlike bilayers, charge order tends to be favored over spontaneous interlayer coherence. We estimate the size of the interlayer tunneling amplitude needed to stabilize superlattice Bloch minibands by comparing the variational energies of interlayer-coherent superlattice miniband states with those of states with charge order and states with no broken symmetries. We predict that when coherent miniband ground states are stable, strong interlayer electronic correlations will strongly enhance the growth-direction tunneling conductance and promote the possibility of Bloch oscillations.Comment: 9 pages LaTeX, 4 figures EPS, to be published in PR

    Consistent perturbations in an imperfect fluid

    Full text link
    We present a new prescription for analysing cosmological perturbations in a more-general class of scalar-field dark-energy models where the energy-momentum tensor has an imperfect-fluid form. This class includes Brans-Dicke models, f(R) gravity, theories with kinetic gravity braiding and generalised galileons. We employ the intuitive language of fluids, allowing us to explicitly maintain a dependence on physical and potentially measurable properties. We demonstrate that hydrodynamics is not always a valid description for describing cosmological perturbations in general scalar-field theories and present a consistent alternative that nonetheless utilises the fluid language. We apply this approach explicitly to a worked example: k-essence non-minimally coupled to gravity. This is the simplest case which captures the essential new features of these imperfect-fluid models. We demonstrate the generic existence of a new scale separating regimes where the fluid is perfect and imperfect. We obtain the equations for the evolution of dark-energy density perturbations in both these regimes. The model also features two other known scales: the Compton scale related to the breaking of shift symmetry and the Jeans scale which we show is determined by the speed of propagation of small scalar-field perturbations, i.e. causality, as opposed to the frequently used definition of the ratio of the pressure and energy-density perturbations.Comment: 40 pages plus appendices. v2 reflects version accepted for publication in JCAP (new summary of notation, extra commentary on choice of gauge and frame, extra references to literature

    Enhancement of Sm3+emission by SnO2nanocrystals in the silica matrix

    Get PDF
    Silica xerogels containing Sm3+ions and SnO2nanocrystals were prepared in a sol–gel process. The image of transmission electron microscopy (TEM) shows that the SnO2nanocrystals are dispersed in the silica matrix. The X-ray diffraction (XRD) of the sample confirms the tetragonal phase of SnO2. The xerogels containing SnO2nanocrystals and Sm3+ions display the characteristic emission of Sm3+ions (4G5/2 → 6HJ(J = 5/2, 7/2, 9/2)) at the excitation of 335 nm which energy corresponds to the energy gap of the SnO2nanocrystals, while no emission of Sm3+ions can be observed for the samples containing Sm3+ions. The enhancement of the Sm3+emission is probably due to the energy transfer from SnO2nanocrystals to Sm3+ions

    Relaxation Effects in the Transition Temperature of Superconducting HgBa2CuO4+delta

    Full text link
    In previous studies on a number of under- and overdoped high temperature superconductors, including YBa_{2}Cu_{3}O_{7-y} and Tl_{2}Ba_{2}CuO_{6+\delta}, the transition temperature T_c has been found to change with time in a manner which depends on the sample's detailed temperature and pressure history. This relaxation behavior in T_c is believed to originate from rearrangements within the oxygen sublattice. In the present high-pressure studies on HgBa_{2}CuO_{4+\delta} to 0.8 GPa we find clear evidence for weak relaxation effects in strongly under- and overdoped samples (Tc4050KT_c\simeq 40 - 50 K) with an activation energy EA(1bar)0.80.9eVE_{A}(1 bar) \simeq 0.8 - 0.9 eV. For overdoped HgBa_{2}CuO_{4+\delta} E_{A} increases under pressure more rapidly than previously observed for YBa_{2}Cu_{3}O_{6.41}, yielding an activation volume of +11 \pm 5 cm^{3}; the dependence of T_c on pressure is markedly nonlinear, an anomalous result for high-T_c superconductors in the present pressure range, giving evidence for a change in the electronic and/or structural properties near 0.4 GPa

    Computer-aided design of nano-filter construction using DNA self-assembly

    Get PDF
    Computer-aided design plays a fundamental role in both top-down and bottom-up nano-system fabrication. This paper presents a bottom-up nano-filter patterning process based on DNA self-assembly. In this study we designed a new method to construct fully designed nano-filters with the pores between 5 nm and 9 nm in diameter. Our calculations illustrated that by constructing such a nano-filter we would be able to separate many molecules

    Two-sided Grassmann-Rayleigh quotient iteration

    Full text link
    The two-sided Rayleigh quotient iteration proposed by Ostrowski computes a pair of corresponding left-right eigenvectors of a matrix CC. We propose a Grassmannian version of this iteration, i.e., its iterates are pairs of pp-dimensional subspaces instead of one-dimensional subspaces in the classical case. The new iteration generically converges locally cubically to the pairs of left-right pp-dimensional invariant subspaces of CC. Moreover, Grassmannian versions of the Rayleigh quotient iteration are given for the generalized Hermitian eigenproblem, the Hamiltonian eigenproblem and the skew-Hamiltonian eigenproblem.Comment: The text is identical to a manuscript that was submitted for publication on 19 April 200
    corecore