23,831 research outputs found

    Reply to "Comment on 'Semiquantum-key distribution using less than four quantum states' "

    Full text link
    Recently Boyer and Mor pointed out the first conclusion of Lemma 1 in our original paper is not correct, and therefore, the proof of Theorem 5 based on Lemma 1 is wrong. Furthermore, they gave a direct proof for Theorem 5 and affirmed the conclusions in our original paper. In this reply, we admit the first conclusion of Lemma 1 is not correct, but we need to point out the second conclusion of Lemma 1 is correct. Accordingly, all the proofs for Lemma 2, Lemma 3, and Theorems 3--6 are only based on the the second conclusion of Lemma 1 and therefore are correct.Comment: 1 pag

    Transverse momentum broadening of vector boson production in high energy nuclear collisions

    Full text link
    We calculate in perturbative QCD the transverse momentum broadening of vector boson production in high energy nuclear collisions. We evaluate the effect of initial-state parton multiple scattering for the production of the Drell-Yan virtual photon and W/ZW/Z bosons. We calculate both the initial- and final-state multiple scattering effect for the production of heavy quarkonia and their transverse momentum broadening in both NRQCD and Color Evaporation model of quarkonium formation. We find that J/ψ\psi and ΄\Upsilon broadening in hadron-nucleus collision is close to 2CA/CF2C_A/C_F times the corresponding Drell-Yan broadening, which gives a good description of existing Fermilab data. Our calculations are also consistent with RHIC data on J/ψ\psi broadening in relativistic heavy ion collisions. We predict the transverse momentum broadening of vector boson (J/ψ\psi, ΄\Upsilon, and W/ZW/Z) production in relativistic heavy ion collisions at the LHC, and discuss the role of the vector boson broadening in diagnosing medium properties.Comment: 22 pages, 10 figures, revised version to appear in Phys. Rev.

    Single transverse-spin asymmetry in Drell-Yan lepton angular distribution

    Get PDF
    We calculate a single transverse-spin asymmetry for the Drell-Yan lepton-pair's angular distribution in perturbative QCD. At leading order in the strong coupling constant, the asymmetry is expressed in terms of a twist-3 quark-gluon correlation function T_F^{(V)}(x_1,x_2). In our calculation, the same result was obtained in both light-cone and covariant gauge in QCD, while keeping explicit electromagnetic current conservation for the virtual photon that decays into the lepton pair. We also present a numerical estimate of the asymmetry and compare the result to an existing other prediction.Comment: 15 pages, Revtex, 5 Postscript figures, uses aps.sty, epsfig.st

    The S=1/2 chain in a staggered field: High-energy bound-spinon state and the effects of a discrete lattice

    Full text link
    We report an experimental and theoretical study of the antiferromagnetic S=1/2 chain subject to uniform and staggered fields. Using inelastic neutron scattering, we observe a novel bound-spinon state at high energies in the linear chain compound CuCl2 * 2((CD3)2SO). The excitation is explained with a mean-field theory of interacting S=1/2 fermions and arises from the opening of a gap at the Fermi surface due to confining spinon interactions. The mean-field model also describes the wave-vector dependence of the bound-spinon states, particularly in regions where effects of the discrete lattice are important. We calculate the dynamic structure factor using exact diagonalization of finite length chains, obtaining excellent agreement with the experiments.Comment: 16 pages, 7 figures, accepted by Phys. Rev.

    On several families of elliptic curves with arbitrary large Selmer groups

    Full text link
    In this paper, we calculate the ϕ(ϕ^)− \phi (\hat{\phi})-Selmer groups S^{(\phi)} (E / \Q) and S^{(\hat{\varphi})} (E^{\prime} / \Q) of elliptic curves y2=x(x+Ï”pD)(x+Ï”qD) y^{2} = x (x + \epsilon p D) (x + \epsilon q D) via descent theory (see [S, Chapter X]), in particular, we obtain that the Selmer groups of several families of such elliptic curves can be arbitrary large.Comment: 22 page

    Secure Direct Communication Based on Secret Transmitting Order of Particles

    Full text link
    We propose the schemes of quantum secure direct communication (QSDC) based on secret transmitting order of particles. In these protocols, the secret transmitting order of particles ensures the security of communication, and no secret messages are leaked even if the communication is interrupted for security. This strategy of security for communication is also generalized to quantum dialogue. It not only ensures the unconditional security but also improves the efficiency of communication.Comment: To appear in Phys. Rev.
    • 

    corecore