76 research outputs found

    Gas Chromatography in Metabolomics Study

    Get PDF

    An Optimized Procedure for Metabonomic Analysis of Rat Liver Tissue Using Gas Chromatography/Time-of-Flight Mass Spectrometry

    Get PDF
    In this paper, we present a tissue metabonomic method with an optimized extraction procedure followed by instrumental analysis with gas chromatography/time-of-flight mass spectrometry (GC/TOFMS) and spectral data analysis with multivariate statistics. Metabolite extractions were carried out using three solvents: chloroform, methanol, and water, with design of experiment (DOE) theory and multivariate statistical analysis. A two-step metabolite extraction procedure was optimized using a mixed solvent of chloroform–methanol–water (1:2:1, v/v/v) and then followed by methanol alone. This approach was subsequently validated using standard compounds and liver tissues. Calibration curves were obtained in the range of 0.50–125.0 µg/mL for standards and 0.02–0.25 g/mL acceptable for liver tissue samples. For most of the metabolites investigated, relative standard deviations (RSD) were below 10% within a day (reproducibility) and below 15% within a week (stability). Rat liver tissues of carbon tetrachloride-induced acute liver injury models (n = 10) and healthy control rats (n = 10) were analyzed which demonstrated the applicability of the developed procedure for the tissue metabonomic study

    GC/MS-Based Urinary Metabolomics Reveals Systematic Differences in Metabolism and Ethanol Response between Sprague–Dawley and Wistar Rats

    Get PDF
    Metabolic differences of experimental animals contribute to pharmacological variations. Sprague–Dawley (SD) and Wistar rats are commonly used experimental rats with similar genetic background, and considered interchangeable in practical researches. In this study, we present the urinary metabolomics results, based on gas chromatography coupled to mass spectrometry (GC/MS), which reveal the systematic metabolic differences between SD and Wistar rats under different perturbations such as fasting, feeding, and consecutive acute ethanol interventions. The different metabotypes between the two strains of rats involve a number of metabolic pathways and symbiotic gut microflora. SD rats exhibited higher individualized metabolic variations in the fasting and feeding states, and a stronger ability to recover from an altered metabolic profile with less hepatic injury from the consecutive ethanol exposure, as compared to Wistar rats. In summary, the GC/MS-based urinary metabolomics studies demonstrated an intrinsic metabolic difference between SD and Wistar rats, which warrants consideration in experimental design using these animal strains

    Potential Metabolite Markers of Schizophrenia

    Get PDF
    Schizophrenia is a severe mental disorder that affects 0.5–1% of the population worldwide. Current diagnostic methods are based on psychiatric interviews, which are subjective in nature. The lack of disease biomarkers to support objective laboratory tests has been a long-standing bottleneck in the clinical diagnosis and evaluation of schizophrenia. Here we report a global metabolic profiling study involving 112 schizophrenic patients and 110 healthy subjects, who were divided into a training set and a test set, designed to identify metabolite markers. A panel of serum markers consisting of glycerate, eicosenoic acid, ß-hydroxybutyrate, pyruvate and cystine was identified as an effective diagnostic tool, achieving an area under the receiver operating characteristic curve (AUC) of 0.945 in the training samples (62 patients and 62 controls) and 0.895 in the test samples (50 patients and 48 controls). Furthermore, a composite panel by the addition of urine ß-hydroxybutyrate to the serum panel achieved a more satisfactory accuracy, which reached an AUC of 1 in both the training set and the test set. Multiple fatty acids and ketone bodies were found significantly (P<0.01) elevated in both the serum and urine of patients, suggesting an upregulated fatty acid catabolism, presumably resulting from an insufficiency of glucose supply in the brains of schizophrenia patients

    An Ultrasonication-Assisted Extraction and Derivatization Protocol for GC/TOFMS-Based Metabolite Profiling

    Get PDF
    Conventional chemical derivatization of metabolites in biological specimens is time-consuming, which limits the throughput and efficiency of metabolite profiling using a gas chromatography/time-of-flight mass spectrometry (GC/TOFMS) platform. We report an ultrasonication-assisted protocol which reduces the derivatization time from hours to about 30 min and significantly enhances the derivatization efficiency prior to a GC/TOFMS analysis. The protocol was evaluated using 40 compounds representing different classes of human metabolites, and demonstrated good analytical precision and accuracy. In comparison with the conventional method, the new protocol was able to increase the intensity of most of the identified peaks (71.0%) in the GC/TOFMS chromatograms of human serum samples. The detected compounds with increased intensity include most amino acids, keto-containing organic acids, carbonyl-containing carbohydrates, and unsaturated fatty acids. We applied this protocol in a metabolomic study of human serum samples obtained from 34 patients diagnosed with hypertension and 29 age- and gender-matched healthy subjects. Metabolite markers associated with hypertension, including glucosamine, D-sorbitol, 1-stearoylglycerol, and homocysteine, were identified and validated by statistical methods and use of reference standards. Our work highlights the potential of this novel approach for the large-scale metabolite profiling of samples generated from plant, animal, and clinical and epidemiological studies

    Urine Metabolite Profiling Offers Potential Early Diagnosis of Oral Cancer

    Get PDF
    Oral cancer is the sixth most common human cancer, with a high morbidity rate and an overall 5-year survival rate of less than 50%. It is often not diagnosed until it has reached an advanced stage. Therefore, an early diagnostic and stratification strategy is of great importance for oral cancer. In the current study, urine samples of patients with oral squamous cell carcinoma (OSCC, n = 37), oral leukoplakia (OLK, n = 32) and healthy subjects (n = 34) were analyzed by gas chromatography-mass spectrometry (GC–MS). Using multivariate statistical analysis, the urinary metabolite profiles of OSCC, OLK and healthy control samples can be clearly discriminated and a panel of differentially expressed metabolites was obtained. Metabolites, valine and 6-hydroxynicotic acid, in combination yielded an accuracy of 98.9%, sensitivity of 94.4%, specificity of 91.4%, and positive predictive value of 91.9% in distinguishing OSCC from the controls. The combination of three differential metabolites, 6-hydroxynicotic acid, cysteine, and tyrosine, was able to discriminate between OSCC and OLK with an accuracy of 92.7%, sensitivity of 85.0%, specificity of 89.7%, and positive predictive value of 91.9%. This study demonstrated that the metabolite markers derived from this urinary metabolite profiling approach may hold promise as a diagnostic tool for early stage OSCC and its differentiation from other oral conditions

    Waterborne Manganese Exposure Alters Plasma, Brain, and Liver Metabolites Accompanied by Changes in Stereotypic Behaviors

    Get PDF
    Overexposure to waterborne manganese (Mn) is linked with cognitive impairment in children and neurochemical abnormalities in other experimental models. In order to characterize the threshold between Mn-exposure and altered neurochemistry, it is important to identify biomarkers that positively correspond with brain Mn-accumulation. The objective of this study was to identify Mn-induced alterations in plasma, liver, and brain metabolites using liquid/gas chromatography–time of flight–mass spectrometry metabolomic analyses; and to monitor corresponding Mn-induced behavior changes. Weanling Sprague–Dawley rats had access to deionized drinking water either Mn-free or containing 1 g Mn/L for 6 weeks. Behaviors were monitored during the sixth week for a continuous 24 h period while in a home cage environment using video surveillance. Mn-exposure significantly increased liver, plasma, and brain Mn concentrations compared to control, specifically targeting the globus pallidus (GP). Mn significantly altered 98 metabolites in the brain, liver, and plasma; notably shifting cholesterol and fatty acid metabolism in the brain (increased oleic and palmitic acid; 12.57 and 15.48 fold change (FC), respectively), and liver (increased oleic acid, 14.51 FC; decreased hydroxybutyric acid, - 14.29 FC). Additionally, Mn-altered plasma metabolites homogentisic acid, chenodeoxycholic acid, and aspartic acid correlated significantly with GP and striatal Mn. Total distance traveled was significantly increased and positively correlated with Mn-exposure, while nocturnal stereotypic and exploratory behaviors were reduced with Mn-exposure and performed largely during the light cycle compared to unexposed rats. These data provide putative biomarkers for Mn-neurotoxicity and suggest that Mn disrupts the circadian cycle in rats

    Metabolic Substrates Exhibit Differential Effects on Functional Parameters of Mouse Sperm Capacitation

    Get PDF
    Although substantial evidence exists that sperm ATP production via glycolysis is required for mammalian sperm function and male fertility, conflicting reports involving multiple species have appeared regarding the ability of individual glycolytic or mitochondrial substrates to support the physiological changes that occur during capacitation. Several mouse models with defects in the signaling pathways required for capacitation exhibit reductions in sperm ATP levels, suggesting regulatory interactions between sperm metabolism and signal transduction cascades. To better understand these interactions, we conducted quantitative studies of mouse sperm throughout a 2-h in vitro capacitation period and compared the effects of single substrates assayed under identical conditions. Multiple glycolytic and nonglycolytic substrates maintained sperm ATP levels and comparable percentages of motility, but only glucose and mannose supported hyperactivation. These monosaccharides and fructose supported the full pattern of tyrosine phosphorylation, whereas nonglycolytic substrates supported at least partial tyrosine phosphorylation. Inhibition of glycolysis impaired motility in the presence of glucose, fructose, or pyruvate but not in the presence of hydroxybutyrate. Addition of an uncoupler of oxidative phosphorylation reduced motility with pyruvate or hydroxybutyrate as substrates but unexpectedly stimulated hyperactivation with fructose. Investigating differences between glucose and fructose in more detail, we demonstrated that hyperactivation results from the active metabolism of glucose. Differences between glucose and fructose appeared to be downstream of changes in intracellular pH, which rose to comparable levels during incubation with either substrate. Sperm redox pathways were differentially affected, with higher levels of associated metabolites and reactive oxygen species generated during incubations with fructose than during incubations with glucose

    Lowered circulating aspartate is a metabolic feature of human breast cancer

    Get PDF
    Distinct metabolic transformation is essential for cancer cells to sustain a high rate of proliferation and resist cell death signals. Such a metabolic transformation results in unique cellular metabolic phenotypes that are often reflected by distinct metabolite signatures in tumor tissues as well as circulating blood. Using a metabolomics platform, we find that breast cancer is associated with significantly (p = 6.27E-13) lowered plasma aspartate levels in a training group comprising 35 breast cancer patients and 35 controls. The result was validated with 103 plasma samples and 183 serum samples of two groups of primary breast cancer patients. Such a lowered aspartate level is specific to breast cancer as it has shown 0% sensitivity in serum from gastric (n = 114) and colorectal (n = 101) cancer patients. There was a significantly higher level of aspartate in breast cancer tissues (n = 20) than in adjacent non-tumor tissues, and in MCF-7 breast cancer cell line than in MCF-10A cell lines, suggesting that the depleted level of aspartate in blood of breast cancer patients is due to increased tumor aspartate utilization. Together, these findings suggest that lowed circulating aspartate is a key metabolic feature of human breast cancer
    • …
    corecore