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Abstract:   
Oral cancer is the sixth most common human cancer, with a high morbidity rate and an overall 5-
year survival rate of less than 50%. It is often not diagnosed until it has reached an advanced 
stage. Therefore, an early diagnostic and stratification strategy is of great importance for oral 
cancer. In the current study, urine samples of patients with oral squamous cell carcinoma 
(OSCC, n = 37), oral leukoplakia (OLK, n = 32) and healthy subjects (n = 34) were analyzed by 
gas chromatography-mass spectrometry (GC–MS). Using multivariate statistical analysis, the 
urinary metabolite profiles of OSCC, OLK and healthy control samples can be clearly 
discriminated and a panel of differentially expressed metabolites was obtained. Metabolites, 
valine and 6-hydroxynicotic acid, in combination yielded an accuracy of 98.9%, sensitivity of 
94.4%, specificity of 91.4%, and positive predictive value of 91.9% in distinguishing OSCC 
from the controls. The combination of three differential metabolites, 6-hydroxynicotic acid, 
cysteine, and tyrosine, was able to discriminate between OSCC and OLK with an accuracy of 
92.7%, sensitivity of 85.0%, specificity of 89.7%, and positive predictive value of 91.9%. This 
study demonstrated that the metabolite markers derived from this urinary metabolite profiling 
approach may hold promise as a diagnostic tool for early stage OSCC and its differentiation from 
other oral conditions.  
 
Article: 
INTRODUCTION 
Oral cancer is the sixth most common human cancer with a high morbidity rate and an overall 5-
year survival rate of less than 50% (Epstein et al. 2002; Mao et al. 2004). Over 90% of oral 
cancers are oral squamous cell carcinoma (OSCC) which arise from the oral mucosal lining 
(Scully and Felix 2006). Reports indicate an increasing worldwide incidence of oral cancer at an 
earlier age (Kantola et al. 2000; Myers et al. 2000). A critical factor in the lack of prognostic 
improvement is the fact that a significant proportion of cancers are initially asymptomatic lesions 
and are not diagnosed or treated until they reach an advanced stage. In OSCC, if the cancer is 
detected at T1 (T means the tumor size invasion level) stage, the 5 year survival rate is over 80%, 
compared to 20–40% if diagnosed at later stages (T3 and T4) (Wong 2006). Oral leukoplakia 
(OLK) is the most frequently occurring oral precancerous lesion and it has considerable 
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malignant transformation in clinic (ranging from 1.58 to 27.27%) (Xu et al. 1992). Early 
detection and screening of high risk populations of OSCC and OLK are promising strategies for 
reducing the incidence of OSCC. Scientists expect to find high-throughput, low cost, more 
efficient and rapid diagnostic and screening approaches. Currently, the most definitive procedure 
for oral cancer diagnosis and screening involves a visit to the physician’s office, a scalpel biopsy 
usually on the tongue or gums, followed by a histopathological evaluation (Wong 2006).  
 
It is now generally agreed that OSCC and precancerous lesions involve not only specially 
expressed genes and proteins, but also changes in the concentration of endogenous metabolites 
(Griffin and Shockcor 2004; Sugimoto et al. 2010; Tiziani et al. 2009). The metabolic profile of 
biofluid (urine, serum, and saliva) can be altered by a variety of physiological processes 
following pathophysiological stimuli. Therefore, a global perturbation in one or more of these 
profiles may demonstrate the presence of a particular disease (Dunn et al. 2005; Qiu et al. 2009). 
There is an urgent need to discover more biomarkers for diagnosis, prognosis, therapeutic 
response prediction and population screening of human cancers, which can hopefully improve 
treatment and reduce cancer mortality. Furthermore, an ideal cancer screening method should be 
accurate, non-invasive, and low-cost. Metabolomics or metabonomics (Sugimoto et al. 2010; 
Tiziani et al. 2009; Yan et al. 2008; Zhou et al. 2009) is a complementary approach for early 
detection of oral cancer (OSCC) which utilizes a novel and unique strategy that provides a 
coherent perspective of the complete metabolic response of organisms to pathophysiologic 
stimuli or genetic modification. Recent urinary metabonomic analysis demonstrates its 
applicability for the diagnosis and prognosis of disease (Kind et al. 2007; Qiu et al. 2010; Wu et 
al. 2009a).  
 
Metabolomic analysis of OSCC patient serum samples (Tiziani et al. 2009) was performed by 
nuclear magnetic resonance (NMR) spectroscopy, with a good discrimination between OSCC 
and the healthy controls. A panel of 23 discriminatory serum metabolites including valine, 
alanine, tyrosine and serine were identified. Salivary (Yan et al. 2008) metabonomics analysis of 
OSCC and OLK was also performed by high performance liquid chromatography–mass 
spectrometry (HPLC–MS) and a total of 14 OSCC-related and 11 OLK-related metabolites were 
discovered; although, these differential metabolites were not identified. Recently, an UPLC-
QTOFMS based salivary metabolomics approach has been successfully demonstrated as a 
complementary tool in the early detection and diagnosis of oral cancer by our group (Wei et al. 
2010). We get an accuracy of 89.3% in distinguishing OSCC from healthy control with a 
sensitivity of 86.5% and specificity of 82.4% using a combination of two metabolites. In the 
current work, we investigated the ability of gas chromatography-mass spectrometry (GC–MS) 
based urinary metabonomics study to completely separate patients with OSCC from the OLK 
and healthy controls and to obtain data-rich information for oral cancer diagnosing. The purpose 
of this study is to identify urinary metabolites as potential biomarkers to diagnose and stratify 
OSCC and precancerous lesions. These biomarkers can be used as a complementary diagnosis 
method by using saliva and blood.  
 
MATERIALS AND METHODS 
Patient selection  
Urine was collected from a group of 37 OSCC patients (26 males and 11 females, 9 of stage I, 12 
of stage II, 6 of stage III, 10 of stage IV), whose mean age was 56 ± 11 years (34–77), 32 OLK 



patients (13 males and 19 females), whose mean age was 60 ± 13 years (34–80). They were 
compared to a control group of 34 healthy individuals (13 males and 21 females), whose mean 
age was 43 ± 14 years (21–73). Clinical information on participants was provided in 
Supplementary Table 1. They were all recruited from the Department of Oral Medicine and 
Surgery, School of Stomatology, Shanghai Jiao Tong University. There was no history of 
receiving medication and none had been treated with topical or systemical steroids. Diagnosis 
was based in all cases on clinical and histopathologic criteria. The Ethical Committee of the 
School of Stomatology, Shanghai Jiao Tong University, approved the protocol and all of the 
subjects signed the Ethical Committee approved consent form agreeing to serve as urine donors 
for the experiments. 
 

Table 1: Summary of the differential metabolites from VIP values of two component OPLS-DA models 
accountable for variations among OSCC, OLK and control groups  

RT 
(min) 

Metabolitesa  OSCC-Ccontrol  OLK-control  OCSS-OLK 
Rank VIPb  Pc  FDRd  FCe   Rank VIPb  Pc  FDRd  FCe   Rank VIPb  Pc  FDRd  FCe  

8.69 Alanine (3) 2.01 6.19E-05 1.40E-3 1.09                       
9.31 Hexanedioic acid            (1) 2.2 2.43E-05 6.67E-4 1.94            
10.48 3-Methylglutakonic acid            (4) 2.06 1.79E-04 1.33E-3 1.95            
10.71 Valine (4) 1.94 1.29E-05 1.00E-3 1.39                       
12.10 Leucine                       (5) 2.01 5.79E-04 1.70E-3 1.51 
12.41 Serine (7) 1.78 3.15E-04 2.20E-3 1.53                       
13.35 Cysteine                       (1) 2.19 2.45E-05 2.00E-4 1.74 
13.54 6-Hydroxynicotinic acid (1) 3.1 2.87E-11 1.00E-4 0.17             (2) 2.15 9.36E-04 2.1E-3 0.30 
19.23 Hippurate (2) 2.57 3.85E-07 3.00E-4 0.49                       
20.75 Phenylalanine                       (6) 1.96 5.06E-4 1.60E-3 1.37 
27.21 Histidine            (3) 2.12 3.44E-04 2.17E-3 0.39            
30.22 Histamine                       (7) 1.87 1.26E-03 2.40E-3 1.51 
30.77 Glutamine,N2-

phenlyalacetyl 
           (3) 2.12 1.82E-05 3.33E-4 0.36            

32.68 Tyrosine (5) 1.92 1.43E-05 1.10E-3 1.65             (4) 2.1 2.54E-05 3.00E-4 1.7 
34.49 Tryptophan            (5) 1.95 2.80E-03 5.00E-3 0.70  (3) 2.12 1.32E-06 1.00E-4 1.99 
37.89 Cystine (6) 1.88 9.17E-04 2.90E-3 3.22  (2) 2.18 6.29E-06 1.67E-4 3.62            

aMetabolites are identified using available library databases; b Variable importance in the projection (VIP) was obtained from OPLS-DA with a threshold of 1.0. c  P-
value and fold change (FC) are calculated from nonparametric Wilcoxon–Mann–Whitney test (one-way ANOVA). d All the metabolites were discriminant (Wilcoxon 
P < 0.05), with an FDR of 5%. e FC with a value larger than 1.0 indicates a relatively higher concentration present in OSCC patients while a value lower than 1.0 
means a relatively lower concentration as compared to the OLK patients and the healthy controls. A fold change (>1) also indicates a relatively higher concentration 
present in OLK patients as compared to the healthy controls, while a value (<1) means a relatively lower concentration  

 
Urine sample collection and preparation  
Urine samples (300 ml) were collected from participants between 9:00 and 10:00 a.m. and there 
was no diet or other restrictions in the sample collection. Urine samples were centrifuged at 
15,400×g for 10 min and the resulting supernatants were immediately stored at −80°C pending 
GC–MS analysis. Before analysis, the urine samples were processed according to our previous 
work (Qiu et al. 2007).  
 
Urinary metabonomics analysis  
The urine samples were derivatized with ethyl chloroformate (ECF) and analyzed with a 
PerkinElmer gas chromatography coupled with a TurboMass-Autosystem XL mass spectrometer 
(PerkinElmer Inc., USA) with minor modifications to our previous work (Qiu et al. 2007). 
Briefly, A typical 600 μl aliquot of supernatant of urine sample (300 μl urine + 300 μl of 
ultrapure water) spiked with internal standards (100 μl of L-2-chlorophenylalanine in water, 
0.1 mg/ml) was prepared for ECF derivatization. After adding 400 μl of anhydrous ethanol, 
100 μl of pyridine, and 50 μl of ECF to the urine sample, the derivatization was conducted by 
ultrasonication for 60 s. The extraction was carried out using 300 μl of chloroform, with the 
aqueous layer pH was carefully adjusted to 9–10 using 100 μl of NaOH (7 mol/l). The 
derivatization procedure was repeated with another 50 μl of ECF into the aforementioned 
products. After the overall mixtures were vortexed for 30 s and centrifuged for 10 min, the 



aqueous layer was aspirated off, while the remaining chloroform layer containing derivatives 
was obtained and dried with anhydrous sodium sulfate for subsequent GC–MS analysis. A 1 μl 
extract aliquot of the extracts was injected onto a DB-5 MS capillary column coated with 5% 
diphenyl cross-linked 95% dimethylpolysiloxane (30 m × 250 μm i.d., 0.25 μm film thickness; 
Agilent J&W Scientific, Folsom, CA) in the split mode (3:1). Either the injection temperature or 
the interface temperature was set to 260°C and the ion source temperature was adjusted to 
200°C. Initial GC oven temperature was 80°C; 2 min after injection, the GC oven temperature 
was raised to 140°C at a rate of 10°C/min, to 240°C at a rate of 4°C/min, then to 280°C at a rate 
of 10°C/min, and finally held at 280°C for 3 min. Helium was the carrier gas with a flow rate of 
1 ml/min. The measurements were made with electron impact ionization (70 eV) in the full scan 
mode (m/z 30–550).  
 
Data processing and statistical analysis  
The data from the GC–MS analysis were converted to NetCDF format via the data analysis 
interface of the PE Instrument (PerkinElmer Inc., USA). Each file was extracted subsequently 
using custom scripts in the MATLAB 7.0 (The MathWorks, Inc., USA) for data pretreatment 
procedures such as baseline correction, de-noising, smoothing and alignment, time-window 
splitting, and peak deconvolution (based on multivariate curve resolution algorithm) (Ni et al. 
2007). The exclusion of internal standard (IS) and solvent peaks, and normalization to a total 
chromatogram based on the total urine collected were carried out. The output data was organized 
in the form of an arbitrary peak index (retention time-m/z pairs), sample names (observations), 
and peak intensity information (variables). IS and any known artificial peaks, such as peaks 
caused by noise, column bleed and ethyl chloroformate derivatization procedure, were removed 
from the data set. Multivariate statistical analyses, including principal component analysis (PCA) 
and orthogonal partial least squares projection to latent structures-discriminant analysis (OPLS-
DA) were performed by SIMCA-P 11.5 software (Umetrics, Umeå, Sweden) (Ni et al. 2007). 
Based on a variable importance in projection (VIP) threshold (VIP > 1.5) from the 7-fold cross-
validated OPLS-DA model together with the V-plot (plot constructed with the VIP value versus 
p (corr) value of each metabolite), which calculated with VIP and p (corr) (Ni et al. 2008), a 
number of metabolites responsible for the differentiation of metabolic profiles of diseased 
individuals and healthy controls could be obtained. In parallel, the metabolites identified by the 
OPLS-DA model were validated at a univariate level using nonparametric Wilcoxon–Mann–
Whitney test from the Matlab statistical toolbox with the critical P-value set to 0.05. False 
discovery rate (FDR) (Benjamini and Hochberg 1995; Storey 2002), a statistical approach to the 
problem of multiple comparisons, was used in this study to verify the discriminant metabolites 
chosen by MW-p values (<0.05). The corresponding fold change shows how these selected 
differential metabolites varied in the OSCC patients from those of healthy controls. Additionally, 
compound identification was performed by comparing the mass fragments with NIST 05 
Standard mass spectral databases in NIST MS search 2.0 (NIST, Gaithersburg, MD) software 
with a similarity of more than 70% and finally verified by available reference compounds.  
 
Receiver operating characteristic curve analysis and prediction models  
Using the results obtained from the GC-TOFMS and OPLS-DA analysis, Receiver Operating 
Characteristic (ROC) curve analysis was further conducted by PASW Statistics 18 (SPSS Inc.) to 
evaluate the predictive power of each of the differential metabolites as we done with the saliva 
metabolomics (Wei et al. 2010). The ROC curve is the graph of points defined by sensitivity and 



(1-specificity) and was produced with the whole GC–MS data. ROC curves were plotted on the 
basis of the set of optimal sensitivity and specificity values of a diagnostic test at different 
cutpoint. The cutpoint was determined for each biomarker by searching for those that yielded 
both high sensitivity and specificity. Area under the curve (AUC) was computed via numerical 
integration of the ROC curves. AUC is often presented along with its 95% confidence interval 
(CI). The 95% CI gives the range of values in which the true value lies and the associated degree 
of confidence. The area under the ROC curves (AUC) and its 95% confidence interval (CI) were 
obtained by nonparametric estimation. AUC is the value of the Wilcoxon–Mann–Whitney 
statistic, an estimate of the probability Pxy that the variable classify a randomly chosen sample to 
the right group. CI is the interval of confidence for the AUC value (Qin and Hotilovac 2008). 
The metabolite signature that has the largest area under the ROC curve was identified as having 
the strongest predictive power for detecting OSCC.  
 
A conventional logistic regression (LR) prediction model was developed to determine the best 
combination of urinary markers for cancer prediction (Li et al. 2004). Logistic regression, aims 
to correctly predict the category of outcome for individual cases using the most parsimonious 
model which created using all predictor variables that are useful in predicting the response 
variable. Backward stepwise regression appears to be the preferred method of exploratory 
analyses, where the analysis begins with a full or saturated model and variables are eliminated 
from the model in an iterative process. The fit of the model is tested after the elimination of each 
variable to ensure that the model still adequately fits the data. When no more variables can be 
eliminated from the model, the analysis has been completed 
(http://userwww.sfsu.edu/~efc/classes/biol710/logistic/logisticreg.htm). In this study, LR model 
was constructed using the binary outcome of the disease (OSCC) and healthy control (or OLK) 
as dependent variables. The backward stepwise method was used to find the best final model. 
The leave-one-out cross validation is to predict the property value for a compound from the data 
set, which is in turn predicted from the regression equation calculated from the data for all other 
compounds. The backward stepwise logistic regression method, available in both binary and 
multinomial regression in SPSS, determines automatically which variables to add or drop from 
the model. The marker values for the case that was left out were used to compute a predicted 
class for that observation. The cross-validation error rate is then the number of samples predicted 
incorrectly divided by the number of samples. ROC curves for the logistic model were plotted 
with the fitted probabilities from the model as possible cutpoints for computation of sensitivity 
and specificity.  
 
RESULTS AND DISCUSSION 
Urinary metabonomics analysis  
Typical GC–MS total ion current (TIC) chromatograms of urine samples from the OSCC group, 
OLK group and healthy control group are shown in Fig. 1a; obvious differences can be observed 
among the three urinary chromatograms. After data normalization, PCA was performed on the 
dataset, which showed a trend of inter-group separation on the scores plot (Figure not provided). 
The OPLS-DA model was applied to the data analysis and the scores plot showed three clusters 
(OSCC, OLK and healthy controls) separating from each other (Fig. 1b).  



 
Figure 1:  a Typical GC–MS total ion current (TIC) chromatograms of OSCC, OLK and healthy 
control urine samples; b the scores plot of the OPLS-DA model of the GC–MS spectral data 
from the OSCC group, OLK group and the healthy control group  

 
 
The OPLS-DA model demonstrated satisfactory modeling and predictive abilities using one 
predictive component and two orthogonal components (R2X = 0.166, R2Y = 0.836, 
Q2(cum) = 0.706), achieving a distinct separation between the metabolite profiles of the OSCC 
group and healthy controls (Fig. 2a, left panel). A V–plot model was used to select the 
significant metabolites that were differentially produced between the healthy control group and 
OSCC group (Fig. 2b, right panel). A total of 65 differentially expressed metabolites were 
measured. The metabolites most strongly influencing the differentiation are listed in Table 1 with 
the VIP, a measure of their relative influence on the model, along with the fold change. All 



metabolites listed in Table 1 were discriminant (Wilcoxon P < 0.05), with an FDR of 5%. The 
most significant differential metabolites were decreased urinary excretion of hippurate, and 6-
hydroxynicotic acid, and increased urinary excretion of alanine, tyrosine, valine, serine and 
cystine (Fig. 2 and Table 1).  
 
 

 
Figure 2: OPLS-DA scores plots and V-plots of metabonomic comparison between a OSCC 
group and the healthy control group, two-component model (R2X = 0.166, R2Y = 0.836, 
Q2(cum) = 0.706); b OSCC group and the OLK group, two-component model (R2X = 0.153, 
R2Y = 0.797, Q2(cum) = 0.581); and c OLK group and the healthy control group, two-
component model (R2X = 0.154, R2Y = 0.785, Q2(cum) = 0.521)  



The differential metabolites which accounted for the inter-group separation between the OSCC 
group and the OLK group, and between the OLK group and the healthy control group, were also 
identified by two two-component OPLS-DA model (R2X = 0.153, R2Y = 0.797, 
Q2(cum) = 0.581), and R2X = 0.154, R2Y = 0.785, Q2(cum) = 0.521), respectively. The most 
significantly altered metabolites are listed in Table 1 using a V-plot model.  
 
Receiver operating characteristic curve analysis  
The detailed statistics of the area under the ROC curves (AUC), and the corresponding 
sensitivities and specificities for each of the total differential urinary metabolites for OSCC 
prediction from healthy control are listed in Table 2. 
 

Table 2: Receiver operating characteristic (ROC) curve analysis of OSCC-associated urinary metabonomic 
signatures  

Metabolites OSCC-healthy control  OSCC-OLK 
AUC (95% CIs) Sensitivity (%) Specificity (%)  AUC (95% CIs) Sensitivity (%) Specificity (%) 

Alanine 0.777 (0.670, 0.883) 67.6 64.1        
Leucine        0.74 (0.622, 0.861) 72.7 61.7 
Cystine 0.729 (0.605, 0.853) 72.2 68.6        
Valine 0.801 (0.697, 0.906) 79.4 73.0        
Serine 0.749 (0.634, 0.863) 66.7 63.6        
Cysteine        0.80 (0.690, 0.902) 78.8 69.4 
6-Hydroxynicotic acid 0.959 (0.919, 1.000) 92.1 94.0  0.73 (0.604, 0.861) 68.9 78.0 
Hippurate 0.851 (0.757, 0.944) 75.0 85.2        
Phenylalanine        0.74 (0.626, 0.862) 69.4 63.6 
Histamine        0.73 (0.607, 0.845) 65.7 58.8 
Tyrosine 0.80 (0.699, 0.900) 73.3 63.4  0.80 (0.691, 0.900) 78.6 63.4 
Tryptophan        0.84 (0.743, 0.936) 82.4 74.3 

 
 
To demonstrate the utility of urinary metabolites for the discrimination between OSCC and 
healthy control, a logistic regression model was built based on seven validated biomarkers. As a 
result, 6-hydroxynicotic acid and valine in combination provided the best prediction (Table 3). 
The coefficient value are positive for 6-hydroxynicotic acid (control to OSCC), indicating that 
the rise in its concentration in urine decreased the probability that the sample was obtained from 
an OSCC subject, while for valine, the coefficient value was negative (control to OSCC), 
indicating that the rise in its concentration in urine increased the probability that the sample was 
obtained from an OSCC subject. The leave-one-out cross-validation error rate based on logistic 
regression models was 2.8% (2 of 71). The ROC curve was computed for the logistic regression 
model. Using a cutoff probability of 50%, we obtained a sensitivity of 94.4% and a specificity of 
91.4%. The positive predictive value (PPV) was 91.9%. The calculated area under the ROC 
curve was 0.99 (95% confidence intervals, 0.979, 1.000) for the logistic regression model 
(Fig. 3a). 6-Hydroxynicotic acid (5.66-fold to healthy control, decreased) was shown lower 
levels in OSCC, while valine (1.39-fold to healthy control, increased) was shown higher levels in 
OSCC (Fig. 3c, d). 
 
 
 
 
 
 



Table 3: Urinary metabolite signatures selected by logistic regression model for the 
discrimination of OSCC from healthy control and OLK  
Metabolite OSCC-control  OSCC-OLK 

Coefficient value S.E. P value   Coefficient value S.E. P value  
Valine −3.393 1.484 0.022        
Cysteine        −0.057 0.026 0.027 
6-Hydroxynicotic acid 8.224 2.620 0.002  1.028 0.442 0.020 
Tyrosine        −0.019 0.007 0.007 
Constant 1.529 0.946 0.106  3.442 1.237 0.005 
Note: The results of logistic regression model show that 6-hydroxynicotic acid and valine are the best combination of urinary biomarkers for the 
discrimination of OSCC from healthy controls, while 6-hydroxynicotic acid, cysteine, and tyrosine are the best combination of urinary 
biomarkers for the discrimination of OSCC from OLK  
 
 
 

 
Figure 3:  a ROC curve analysis for the predictive power of combined urinary biomarkers for 
distinguishing OSCC from healthy control. The final logistic model included two urinary 
biomarkers, 6-hydroxynicotic acid and valine. Using a cutoff probability of 50%, we obtained 
sensitivity of 94.4% and specificity of 91.4% by ROC. The calculated area under the ROC curve 
was 0.989 (95% confidence intervals, 0.979, 1.000); b ROC curve analysis for the predictive 
power of combined urinary biomarkers for distinguishing OSCC from OLK. The final logistic 
model included three urinary biomarkers, 6-hydroxynicotic acid, cysteine, and tyrosine. Using a 
cutoff probability of 50%, we obtained sensitivity of 85.0% and specificity of 89.7% by ROC. 
The calculated area under the ROC curve was 0.927 (95% confidence intervals, 0.869, 0.985); c 
Box plots of two differential metabolites in distinguishing OSCC from healthy control; d Box 
plots of three differential metabolites in distinguishing OSCC from OLK  

 
 
Analogously, we constructed the same logistic regression model based on seven validated 
biomarkers including leucine, cysteine, 6-hydroxynicotic acid, phenylalanine, histamine, 
tyrosine, and tryptophan for the discrimination between OSCC and OLK. The combination of 



cysteine, 6-hydroxynicotic acid, and tyrosine provided the best prediction (Table 3). The 
coefficient value is positive for 6-hydroxynicotic acid (OLK to OSCC), indicating that the rise in 
its concentration in urine decreased the probability that the sample was obtained from an OSCC 
subject, while for cysteine and tyrosine, the coefficient value was negative (OLK to OSCC), 
indicating that the rise in their concentration in urine increased the probability that the sample 
was obtained from an OSCC subject. The leave-one-out cross-validation error rate based on 
logistic regression models was 4.3% (3 of 69). The ROC curve was computed for the logistic 
regression model. Using a cutoff probability of 50%, we obtained a sensitivity of 85.0% and a 
specificity of 89.7%. The PPV was 91.9%. The calculated area under the ROC curve was 0.93 
(95% confidence intervals, 0.869, 0.985) for the logistic regression model (Fig. 3b). 6-
Hydroxynicotic acid (3.33-fold to OLK, downregulated) was shown lower level in OSCC, while 
cysteine (1.74-fold to OLK, upregulated) and tyrosine (1.70-fold to OLK, upregulated) were 
shown higher levels in OSCC (Fig. 3c, d).  
 
Metabolite annotation and biochemical hypothesis  
The OPLS-DA models derived from our current GC–MS metabonomics analysis demonstrated 
good separation among OSCC and OLK patients and healthy controls, highlighting the 
diagnostic potential of this non-invasive analytical approach. Differential metabolites were 
identified in OSCC relative to OLK or the control group by comparing the mass fragments with 
NIST 05 standard mass spectral databases and available reference compounds (Fig. 2 and 
Table 1). However, there are significant differences of age distribution and genders between 
OSCC and OLK patients and between OSCC patients and healthy controls, respectively. This 
may produce false positive results in metabolite marker selection. According the method used to 
evaluate the impact of age and gender imbalance on the identified discriminant metabolites in 
our previous saliva study (Wei et al. 2010), a smaller sample set with age or gender matched 
OSCC patients and healthy controls was used and constructed a new OPLS-DA model. A V–plot 
model was used to select the significant metabolites that were differentially expressed in OSCC 
group relative to the control group. As a result, a very similar number of total discriminants and 
the top 10 discriminant metabolites are the same as those identified using the whole sample set 
(data was not provided). Therefore, we believe that the impact of age and gender on the 
identified discriminant metabolites in the diseased group is insignificant. The impact of age and 
gender on the identified discriminant metabolites contributing for the separation of OSCC from 
OLK was studied in the same way.  
 
The corresponding V-plot (Fig. 2, right panel) indicated that the differential metabolites 
contributing to the separation of the metabolic patterns of the control group and OSCC group are 
decreased urinary levels of hippurate and 6-hydroxynicotic acid, and increased levels of alanine, 
serine, cystine, tyrosine, and valine. However, of these seven metabolites, valine, tyrosine and 
serine were shown lower levels in serum metabolites (Tiziani et al. 2009) and valine was shown 
lower level in saliva metabolites (Wei et al. 2010) in OSCC, relative to healthy subjects. The 
levels of valine, tyrosine and serine in urine and serum and levels of valine in urine and saliva 
changed differently (in opposite direction) in OSCC are probably due to the different metabolic 
rates (for maintaining a homeostatic state) in the different biological compartments (serum, 
urine, and saliva). Each metabolite will have a unique abundance level in a given compartment, 
which alters differently in response to pathophysiological stimuli. An example is that the level of 
valine and alanine are reported to be about 233 and 333 μM in blood, but only 10 and 10 μM in 



saliva, and 41 ± 1 and 4.23 ± 0.64 μM in urine, respectively, in healthy adults older than 18 years 
old (www.hmdb.ca). We also found a depleted level of tryptophan in serum but an elevated level 
in urine of the same group of colorectal cancer patients in one of our recently published 
metabonomic studies (Qiu et al. 2009; Qiu et al. 2010). A list of the most significant differential 
metabolites (P < 0.05) in the OSCC group and in the OLK group (compared to the control 
group) and between the OSCC group and the OLK group is summarized in Table 1. The 
identified discriminant metabolites with MW-p values lower than 0.05 were validated with a 
FDR (threshold set at 0.05), which means there is a 5% false rate in the discovered discriminant 
metabolites.  
 
The branched chain amino acid (BCAA), valine, was shown higher level in OSCC patients 
relative to the healthy controls. It is worth noting that increased valine level was also found in 
hepatocellular carcinoma, due to an increased glycolysis (Chan et al. 2009), and a direct 
inhibitory effect on tumor growth was confirmed after the depletion of valine (Ishigure et al. 
2001). Leucine, the other BCAA, was also significantly higher in the OSCC group compared to 
the OLK group. Valine and leucine share the same enzyme systems (branched-chain alpha-
ketoacid dehydrogenase for their initial degradative steps), which are considered as a group in 
terms of their roles in amino acid homeostasis (Wu et al. 2009b). Another BCAA, isoleucine, 
though was also higher in the OSCC group compared to the healthy control group but with no 
statistical significance. In this study, an increased level of alanine and serine was also found in 
oral cancer samples, suggesting involvement of glycolysis (Wu et al. 2009b). The level of 
tyrosine was higher in the OSCC than that in the control group in our study. Tyrosine can be 
synthesized in the body from phenylalanine and the conversion of phenylalanine to tyrosine is 
catalyzed by the enzyme phenylalanine hydroxylase. As reported, levels of most amino acids and 
their primary derivatives were significantly higher in tumors than in normal colon and stomach 
tissues (Hirayama et al. 2009) and all free amino acids are essential metabolic substrates for 
tumor cells. Solid tumors exhibit relatively specific amino acid dependency that functionally 
regulates their survival, proliferation, and metastasis. Tyrosine/phenylalanine restriction also 
inhibits invasion and metastasis of other cancers (Pelayo et al. 2001). Specific amino acid 
dependency is one of the metabolic abnormalities of cancer cells and can be regarded as the 
metabolic basis for their malignant behavior (Wu et al. 2009b).  
 
It was observed that patients with OSCC have altered urinary excretion levels of hippurate, 
which is believed to be the product of the gut microflora co-metabolization (Claus et al. 2008). 
This suggests that there is a significant involvement of gut flora in the disease-induced metabolic 
alteration. Hippurate had antitumor effects both in vitro and in vivo by killing various tumor 
strains (Spustova and Oravec 1989) and the decreased levels of hippurate in the urine of OSCC 
patients may be evidence on the occurrence of OSCC. Cystine is an essential precursor for the 
biosynthesis of glutathione, a major redox regulatory molecule that protects cells from 
endogenously produced reactive oxygen species. Inhibition of cystine uptake disrupts the growth 
of primary brain tumors (Chung et al. 2005) and increased cystine uptake promotes the 
malignant progression of Nb2 lymphoma cells (Gout et al. 1997). Cystine/cysteine redox cycle is 
a discrete major regulator of cell survival (Banjac et al. 2008) and as proposed by Ye and 
Sontheimer (Ye and Sontheimer 1999), in the central nervous system, deregulated activity of the 
cystine/cysteine cycle, as observed in human malignant glioma cells, leads to a detrimental 
increase in secreted glutamate associated with increased glutamate toxicity, neuronal death and 



seizures. The elevation of cysteine and tyrosine were consistent with enhanced glycolysis and 
effects on the TCA cycle (Wu et al. 2010). The reason that decreased level of 6-hydroxynicotic 
acid in OSCC remains to be unknown.  
 
OSCC is a complex disease, resulting from an interdependent series of biochemical alterations, 
rather than a single disruptive event. Therefore, a panel of several metabolite markers will 
improve the sensitivity and specificity for OSCC detection. A logistic regression model was 
applied to evaluate the predictive power of each of the differential metabolite and then get the 
optimal combination of metabolites that can be used for cancer prediction. From the result of 
logistic regression analysis (Table 3), it showed that 6-hydroxynicotic acid and valine are the 
best predictors for distinguishing OSCC from healthy control, and 6-hydroxynicotic acid, 
cysteine, and tyrosine for OSCC from OLK. The PPV for OSCC to healthy control was 91.9, and 
91.9% for OSCC to OLK, which indicates that the above metabolite biomarkers may be 
promising for screening. However, although promising in distinguishing OSCC from the 
controls, the sensitivity (94.4%) and specificity (91.4%) cannot meet the demands for being a 
clinical tool for disease screening. Efforts should be made to investigate and validate other 
candidate biomarkers and to combine them to generate a higher power for oral cancer 
discrimination and prediction. The discovered candidate biomarkers need to be extensively 
validated before they can be translated into real world diagnostic and screen application.  
 
CONCLUDING REMARKS 
In summary, the urine metabolic profiling approach identified distinct metabolic signatures of 
OSCC, OLK and healthy controls, which are characterized by a number of differentially 
expressed urine metabolites. The study demonstrates that this sufficiently robust and non-
invasive profiling approach can be a promising screening tool for the early diagnosis of oral 
cancer. The results of this study also highlight the applicability of urinary metabolite markers 
that can be used as a stratification tool in the diagnosis of different oral conditions, 
complementary to the existing clinical procedures.  
 
ABBREVIATIONS 
OSCC   Oral squamous cell carcinoma 
OLK   Oral leukoplakia 
GC–MS  Gas chromatography–mass spectrometry 
PCA   Principal component analysis 
OPLS-DA  Orthogonal partial least squares-discriminant analysis 
VIP   Variable importance in the projection 
ROC   Receiver operating characteristic 
LR   Logistic regression 
FDR   False discovery rate 
R2X   Fraction of sum of squares (SS) of X explained by each component 
R2Y   Fraction of sum of squares (SS) of Y explained by each component 
Q2cum  The cumulative Q2 for the extracted components 
V-plot   Plot constructed with the VIP value versus p(corr) value of each metabolite 
p(corr)  P scaled as correlation coefficient between X and T 
t[2]O   Score of the orthogonal component 
t[1]P   Score of the first non-orthogonal component 
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