77 research outputs found

    CHITOSAN DERIVATIVES FOR TISSUE ENGINEERING

    Get PDF
    Chitosan, a naturally occurring polysaccharide, and its derivatives have been widely explored for biomedical applications due to their biocompatibility and biodegradability. In our studies, we developed a series of chitosan derivatives through chemical modifications. These chitosan derivatives not only possess better processibility in scaffolds fabrication, but also show excellent potentials in tissue engineering applications, including blood vessel and bone tissue engineering. The excellent antithrombogenic property is crucial for vascular engineering applications, especially in engineering small-diameter blood vessels. In our studies, chitosan was chemically modified by phthalization and the phthalized chitosan exhibited great antithrombogenic property. Through a wet- phase-inversion process, tubular constructs of varying sizes, morphology, and permeability were fabricated from phthalized chitosan, suggesting its potential as a scaffold for vascular engineering. The excellent osteoconductivity of chitosan and some of its derivatives make them good candicates for orthorpaedic applications. In our studies, we synthesized novel photocurable chitosans which possess great processibility compared to raw chitosan and can be fabricated into scaffolds with desired shape, pore size and topography upon light exposure. These photocured porous chitosan scaffolds showed great osteoconductivity in vivo. Moreover, the photocured chitosan scaffolds were developed into osteoinductive scaffolds through immobilizing heparin on the surface followed by loading BMP-2. Ectopic bone growth is observed when subcutaneously implanted. All of these indicated that the newly developed photocurable chitosan have great potential in solving some thorny problems in bone repair, such as non-union bone defects and long bone defects with irregular shapes. In order to mimic the structure of extracellular matrix, the hybrid scaffolds containing photocurable chitosan and gelatin were developed. It is very interesting to note that the interaction between chitosan and gelatin, and the photocuring process can control the morphology of the complex scaffolds. Heparin can also be effectively immobilized on the surface of complex scaffolds. Loaded with BMP-2, the heparinized complex scaffolds can be used as osteoinductive scaffolds, as indicated by the ectopic bone growth in vivo. Moreover, this complex scaffold shows intriguing elasticity. Combined with the potential ability of delivering various growth factors, this complex scaffolds have great potentials in tissue engineering, especially in cartilage tissue engineering

    Polysaccharide-based biomaterials

    Get PDF
    Disclosed are a series of kneadable, pliable polymers for use in forming compositions that can be used as bone wax or as a cellular scaffold. Polymers can include a polysaccharide backbone and can be biocompatible and thrombogenic. In addition, the compositions can be osteoconductive as well as biodegradable. The disclosed compositions can be used to help control bleeding from bone surfaces as well as to promote bone regeneration and fusion. The compositions can inhibit the growth of microorganisms in implantation sites and can be loaded with additional bioactive agents to further promote healing and infection prevention

    Magnetic forces enable controlled drug delivery by disrupting endothelial cell-cell junctions

    Get PDF
    The vascular endothelium presents a major transport barrier to drug delivery by only allowing selective extravasation of solutes and small molecules. Therefore, enhancing drug transport across the endothelial barrier has to rely on leaky vessels arising from disease states such as pathological angiogenesis and inflammatory response. Here we show that the permeability of vascular endothelium can be increased using an external magnetic field to temporarily disrupt endothelial adherens junctions through internalized iron oxide nanoparticles, activating the paracellular transport pathway and facilitating the local extravasation of circulating substances. This approach provides a physically controlled drug delivery method harnessing the biology of endothelial adherens junction and opens a new avenue for drug delivery in a broad range of biomedical research and therapeutic applications

    The genome sequence of the wisent (Bison bonasus)

    Get PDF
    This work was supported by the Youth Science and Technology Innovation Team of Sichuan Province (2014TD003), Shenzhen Industrial Designation Services Cloud Platform (GGJS20150429172906635), International Collaboration 111 Projects of China, Fundamental Research Funds for the Central Universities, 985 and 211 Projects of Sichuan University.The wisent, also known as the European bison, was rescued from extinction approximately 80 years ago through the conservation of 12 individuals. Here, we present the draft genome sequence of a male wisent individual descended from this founding stock. A total of 366 billion base pairs (Gb) of raw reads from whole-genome sequencing of this wisent were generated using the Illumina HiSeq2000 platform. The final genome assembly (2.58 Gb) is composed of 29,074 scaffolds with an N50 of 4.7 Mb. 47.3% of the genome is composed of repetitive elements. We identified 21,542 genes and 58,385 non-coding RNAs. A phylogenetic tree based on nuclear genomes indicated sister relationships between bison and wisent and between the wisent-bison clade and yak. For 75 genes we obtained evidence of positive evolution in the wisent lineage. We provide the first genome sequence and gene annotation for the wisent. The availability of these resources will be of value for the future conservation of this endangered large mammal and for reconstructing the evolutionary history of the Bovini tribe.Publisher PDFPeer reviewe

    Draft genome of the Marco Polo Sheep (<i>Ovis ammon polii</i>)

    Get PDF
    Background: The Marco Polo Sheep (Ovis ammon polii), a subspecies of argali (Ovis ammon) that is distributed mainly in the Pamir Mountains, provides a mammalian model to study high altitude adaptation mechanisms. Due to over-hunting and subsistence poaching, as well as competition with livestock and habitat loss, O. ammon has been categorized as an endangered species on several lists. It can have fertile offspring with sheep. Hence, a high-quality reference genome of the Marco Polo Sheep will be very helpful in conservation genetics and even in exploiting useful genes in sheep breeding. Findings: A total of 1022.43 Gb of raw reads resulting from whole-genome sequencing of a Marco Polo Sheep were generated using an Illumina HiSeq2000 platform. The final genome assembly (2.71 Gb) has an N50 contig size of 30.7 Kb and a scaffold N50 of 5.49 Mb. The repeat sequences identified account for 46.72% of the genome, and 20 336 protein-coding genes were predicted from the masked genome. Phylogenetic analysis indicated a close relationship between Marco Polo Sheep and the domesticated sheep, and the time of their divergence was approximately 2.36 million years ago. We identified 271 expanded gene families and 168 putative positively selected genes in the Marco Polo Sheep lineage. Conclusions: We provide the first genome sequence and gene annotation for the Marco Polo Sheep. The availability of these resources will be of value in the future conservation of this endangered large mammal, for research into high altitude adaptation mechanisms, for reconstructing the evolutionary history of the Caprinae, and for the future conservation of the Marco Polo Sheep

    The effect of salt stress on the chlorophyll level of the main sand-binding plants in the shelterbelt along the Tarim Desert Highway

    Get PDF
    Based on the fact that only high saline water irrigated to the shelterbelt along the Tarim Desert Highway, the experiment about three species with six degree of salinity was carried out to analyze the relation between chlorophyll content and salt stress. The results show that: (1) the chlorophyll content of tree species decreases with aggravating the salt stress, which explains that salt stress can affect chlorophyll accumulation of three plants; (2) from chlorophyll content with different salinity, the chlorophyll content of three shrubs also has twice obvious decrease, which indicates that some plants adapt to salt stress. We divided salt resistance of the plant into three grades, namely the slight salt resistance, the heavy salt resistance and the extreme salt resistance; and (3) according to the experimental results, the salt stress of each plant was divided, which can provide theoretical guidance for constructing the shelterbelt along the Tarim Desert Highway

    Evaluation of soil fertility of the shelter-forest land along the Tarim Desert Highway

    Get PDF
    To study the changes of soil fertility of the shelter-forest land along the Tarim Desert Highway, soils from the forest land were collected at the layers of 0-10 cm, 10-20 cm, 20-30 cm. Different soil fertility parameters were measured, and quantitative evaluation of soil fertility was performed by the soil integrated fertility index (IFI). The main results show that the construction of the shelter forest along the Tarim Desert Highway improved the soil physical structure, increased soil porosity and enhanced water-holding capacity. With the increase of plantation time of the shelter forest, soil microbial biomass C, N, P and the activities of six types of enzyme were enhanced, which promoted the accumulation and transformation of soil nutrients of the forest land. Consequently, the soil nutrients in 12-year-old forest land were much higher than in the newer ones and drifting sand. However, soil salt content of the older forest land was higher owing to the drip-irrigation with salt water. Through the comprehensive evaluation, we found that soil fertility index in the forest land was enhanced with the forest age, and it had close correlations with the growth indices of the forest trees. In summary, construction of the shelter-forest along the Tarim Desert Highway accelerated the improvement of aeolian soil in the forest land, and the soil fertility improved year by year. We conclude that the forest trees grow normally under the stress of the present drip-irrigation with salt water

    The salt accumulation at the shifting aeolian sandy soil surface with high salinity groundwater drip irrigation in the hinterland of the Taklimakan Desert

    Get PDF
    The EC analysis and water serial sampling was performed in the Tarim Desert Highway shelterbelt to explore the water and salt dynamics of the shallow aeolian sandy soil (0-30cm) under high salinity groundwater drip irrigation. It was found that in one irrigation cycle, the EC of the shallow shifting aeolian sandy soil (0-30cm) increased while the water content decreased. The EC of the surface aeolian sandy soil at the wetting front was far greater than that of the wetting area or the outside of the wetting area. During the irrigation cycle, the EC of the wetting front and the wetting area changed at a significant magnitude, whereas the EC of the outside of the wetting area remained largely steady. The horizontal influence distance of drip irrigation on the salt accumulation at the soil surface was about 100 cm, and the vertical influence depth was 5 cm. The three most abundant ions in the accumulated salt at the aeolian sandy soil surface were Na+, Cl- and SO42-. The salt accumulation at the soil surface was influenced by air temperature, wind speed, mineralization of irrigation water, sand burial thickness, soil texture, and litter content

    Site type classification for the shelter-forest ecological project along the Tarim Desert Highway

    Get PDF
    Site types of the afforestation region of the shelter-forest ecological project along the Tarim Desert Highway were classified based on the natural conditions and windblown sand damages. The extremely severe environment, the irrigation with saline water, and large-scale linear project makes this classification of site types most unique and significant. It adopted a three-level classification system integrating the dominant factors and restrictive factors in regard to their impacts on plant survival and growth as well as on the protective property. Six site type districts were classified based on the medium-scale geomorphic unit, the windblown sand damages, and the major production facilities; 21 site type groups were obtained according to the small-scale geomorphic type, terrain, and wind regime; 36 site types were further classified based on the salt contents of the underground water and soil types. Especially, in this study, spatial distribution of the six site type districts along the desert highway is continuous, which is unique and different from that of most other classifications. In addition, the salt-stress tolerance threshold of the main afforestation plant species to underground water have been set to 8 g/L and 15 g/L according to selective breeding tests and the salinity spatial distribution of the underground water. Thus, the underground water with salinity lower than 8 g/L is defined as light saline water in this area
    corecore