56 research outputs found

    Multidimensional hierarchical self-assembly of amphiphilic cylindrical block comicelles

    Get PDF
    Cylindrical polymer micelles pack in 3D When you control chemistry, solvents, temperature, and concentration, surfactants and block copolymers will readily assemble into micelles, rods, and other structures. Qiu et al. take this to new lengths through precise selection of longer polymer blocks that self-assemble through a crystallization process (see the Perspective by Lee et al. ). They chose polymer blocks that were either hydrophobic or polar and used miscible solvents that were each ideal for only one of the blocks. Their triblock comicelles generated a wide variety of stable three-dimensional superstructures through side-by-side stacking and end-to-end intermicellar association. Science , this issue p. 1329 ; see also p. 1310 </jats:p

    Uniform patchy and hollow rectangular platelet micelles from crystallizable polymer blends

    Get PDF
    Growing patterned rectangular objects The growth of patterned objects usually requires a template to aid the positioning of multiple materials. Qiu et al. used the seeded growth of a crystallizable block copolymer and a homopolymer to produce highly uniform rectangular structures (see the Perspective by Ballauff). Chemical etching, or dissolution, of uncross-linked regions of the rectangular structures produced perforated platelet micelles. The sequential addition of different blends and cross-linking/dissolution strategies allowed the formation of well-defined hollow rectangular micelles, which can be functionalized in a variety of ways. Science , this issue p. 697 ; see also p. 656 </jats:p

    Hierarchical Self-Assembly of Toroidal Micelles into Multidimensional Nanoporous Superstructures

    Get PDF
    Materials with controlled porosity play a prominent role in industrial and domestic applications. Although a rich array of methods has been developed to tune the pore size over a broad range (from <1 nm to >1 μm), the fabrication of functional materials with a fully open porous structure with sub-100 nm pore size has remained a significant challenge. Herein, we report the hierarchical assembly of block copolymer toroidal micelles with an intrinsic cavity into multidimensional nanoporous superstructures (pore size 85–90 nm) by modulation of interparticle interactions. The toroids aggregate into oligo-supermicelles or 2D hexagonal arrays through van der Waals interactions upon drying on a substrate, while synergistic hydrogen bonding interactions further promote the formation of 3D nanoporous superstructures directly in solution. Thus, toroidal micelles can be manipulated as a type of distinctive building block to construct nanoporous materials

    Transformation and patterning of supermicelles using dynamic holographic assembly

    Get PDF
    Although the solution self-assembly of block copolymers has enabled the fabrication of a broad range of complex, functional nanostructures, their precise manipulation and patterning remain a key challenge. Here we demonstrate that spherical and linear supermicelles, supramolecular structures held together by non-covalent solvophobic and coordination interactions and formed by the hierarchical self-assembly of block copolymer micelle and block comicelle precursors, can be manipulated, transformed and patterned with mediation by dynamic holographic assembly (optical tweezers). This allows the creation of new and stable soft-matter superstructures far from equilibrium. For example, individual spherical supermicelles can be optically held in close proximity and photocrosslinked through controlled coronal chemistry to generate linear oligomeric arrays. The use of optical tweezers also enables the directed deposition and immobilization of supermicelles on surfaces, allowing the precise creation of arrays of soft-matter nano-objects with potentially diverse functionality and a range of applications

    Uniform Toroidal Micelles via the Solution Self-Assembly of Block Copolymer-Homopolymer Blends Using a "frustrated Crystallization" Approach

    Get PDF
    Toroidal nanostructures are of growing importance due to their unique geometry and potential utility in materials fabrication. Although a variety of amphiphilic block copolymers has been shown to self-assemble into toroidal micelles, the conventional methods used are often very slow with little control over the size of the resulting nanostructures. Here, we report a rapid and efficient synthetic route to prepare toroidal micelles of near uniform diameter through the cooperative coassembly of amorphous blends of polyferrocenylsilane block copolymer and homopolymer, where the degree of polymerization of the core-forming metalloblock in the former is greater than for the latter. The self-assembly process is accomplished within a few minutes, and the ring size of the toroids can be varied between 30 and 90 nm by adjusting the mass ratio of the block copolymer and homopolymer. The kinetic stability of the resulting toroidal micelles can be enhanced by frustrating core crystallization through solvent modulation and the toroids can also be readily used as templates to fabricate circular arrays of metal nanoparticles

    Chiral Transmission to Cationic Polycobaltocenes over Multiple Length Scales Using Anionic Surfactants

    Get PDF
    International audienceChiral polymers are ubiquitous in nature, and the self-assembly of chiral materials is a field of widespread interest. In this paper, we describe the formation of chiral metallopolymers based on poly(cobaltoceniumethylene) ([PCE] ), which have been prepared through oxidation of poly(cobaltocenylethylene) (PCE) in the presence of enantiopure N-acyl-amino-acid-derived anionic surfactants, such as N-palmitoyl-l-alanine (C-l-Ala) and N-palmitoyl-d-alanine (C-d-Ala). It is postulated that the resulting metallopolymer complexes [PCE][C-l/d-Ala] contain close ionic contacts, and exhibit chirality through the axially chiral ethylenic CH-CH bridges, leading to interaction of the chromophoric [CoCp] units through chiral space. The steric influence of the long palmitoyl (C) surfactant tail is key for the transmission of chirality to the polymer, and results in a brushlike amphiphilic macromolecular structure that also affords solubility in polar organic solvents (e.g., EtOH, THF). Upon dialysis of these solutions into water, the hydrophobic palmitoyl surfactant substituents aggregate and the complex assembles into superhelical ribbons with identifiable "handedness", indicating the transmission of chirality from the molecular surfactant to the micrometer length scale, via the macromolecular complex

    DNA-induced circularly polarized luminescence of helicene racemates

    No full text
    International audienceEnantiopure helicenes have been extensively investigated due to their outstanding chiroptical properties, while helicene racemates are considered as chiroptically silent. Here, we describe a facile method to produce circularly polarized luminescence (CPL) from helicene racemates via supramolecular association with DNA in aqueous solution. Racemic cationic helicene derivatives are immobilized in the grooves of commercially available double-stranded right-handed DNA, and the discrimination of left- and right-handed helicenes by chiral DNA is monitored by single molecule force spectroscopy. This subsequently leads to the generation of prominent CPL with dissymmetric factor |g(lum)| of close to 0.01, which is approximate to enantiopure helicenes. The strategy developed in this work avoids the tedious and expensive chiral resolution process and provides a distinctive insight into the fabrication of CPL-emitting systems
    • …
    corecore