9 research outputs found

    Root Growth, Water and Nitrogen Use Efficiencies in Winter Wheat Under Different Irrigation and Nitrogen Regimes in North China Plain

    Get PDF
    Excessive nitrogen (N) application combined with water shortage has a negative effect on crop production, particularly wheat (Triticum aestivum L.) production in the North China Plain. This study examined root growth and water and nitrogen use efficiencies in wheat grown on loam soil in the North China Plain, from 2012 to 2014 using a fixed-position experiment initiated in 2010. The experiment followed a completely randomized split-plot design with four replications, taking irrigation [no irrigation (W0) versus irrigation at jointing plus flowering (W2)] as the main plot and N treatment (0, 180, 240, and 300 kg N ha-1) as the subplot. Compared with W0, W2 increased grain yield and root weight density (RWD) by up to 91.3 and 57.7% in 2012–2013, and 15.5 and 43.0% in 2013–2014, respectively, across all N application rates. Irrigation had no effect on grain water use efficiency (WUEY), but caused a decrease in biomass WUE at vegetative growth stage (WUEF) and at grain-filling stage (WUEM). Significant improvements in grain yield and biomass WUE during vegetative growth stage, and reductions in nitrogen-use efficiency (NUE) and RWD, were observed with increasing N application. Compared with non-N treatment, N treatment increased yield by up to 98.9 and 93.7% in 2012–2013 and 2013–2014, respectively, decreasing RWD by 12.0 and 16.9%. Correlation analysis further revealed that RWD was positively correlated with grain yield, evapotranspiration (ET) and NUE. NUE was also positively correlated with nitrogen uptake efficiency (UPE). Overall, the findings suggest that optimal N application improves NUE by increasing above–ground nitrogen uptake as a result of optimized RWD and a synchronous increase in WUE, thus increasing yield. Under the experimental conditions, an N application rate of 240 kg N ha-1 plus irrigation at jointing and flowering is recommended

    Effects of elevated atmospheric [CO2] on grain starch characteristics in different specialized wheat

    Get PDF
    The increasing atmospheric [CO2] poses great challenges to wheat production. Currently, the response of starch characteristics in different specialized wheat cultivars to elevated [CO2], as well as the underlying physiological and molecular mechanisms remains unclear. Therefore, an experiment was conducted with open-top chambers to study the effects of ambient [CO2] [a(CO2)] and elevated [CO2] [e(CO2)] on photosynthetic performance, yield and starch characteristics of bread wheat (Zhengmai 369, ZM369) and biscuit wheat (Yangmai 15, YM15) from 2020 to 2022. The results demonstrated a significant improvement in photosynthetic performance, yield, amylose and amylopectin content, volume ratio of large granules under e[CO2]. Moreover, e[CO2] upregulated the gene expression and enzyme activities of GBSS (Granule-bound starch synthase) and SSS (Soluble starch synthase), increased starch pasting viscosity, gelatinization enthalpy and crystallinity. Compared to YM15, ZM369 exhibited a higher upregulation of GBSSI, greater increase in amylose content and volume ratio of large granules, as well as higher gelatinization enthalpy and crystallinity. However, ZM369 showed a lower increase in amylopectin content and a lower upregulation of SSSI and SSSII. Correlation analysis revealed amylose and amylopectin content had a positive correlation with GBSS and SSS, respectively, a significant positively correlation among the amylose and amylopectin content, starch granule volume, and pasting properties. In conclusion, these changes may enhance the utilization value of biscuit wheat but exhibit an opposite effect on bread wheat. The results provide a basis for selecting suitable wheat cultivars and ensuring food security under future climate change conditions

    Variation in Leaf Type, Canopy Architecture, and Light and Nitrogen Distribution Characteristics of Two Winter Wheat (Triticum aestivum L.) Varieties with High Nitrogen-Use Efficiency

    No full text
    Studies of traits related to nitrogen (N)-use efficiency (NUE) in wheat cultivars are important for breeding N-efficient cultivars. Canopy structure has a major effect on NUE, as it determines the distribution of light and N. However, the mechanism by which canopy structure affects the distribution of light and N within the canopy remains unclear. The N-efficient winter wheat varieties YM49 and ZM27 and N-inefficient winter wheat varieties XN509 and AK58 were grown in the field under two N levels. Light transmittance was enhanced, and the leaf area index and photosynthetically active radiation were lower in the N-efficient cultivar population, which was characterized by moderately sized flag leaves, a low frequency of canopy leaf curling, a low light attenuation coefficient (KL), and high plant compactness. Reductions in the amount of shade increased the distribution of light and N resources to the middle and lower layers. The photosynthetic rate, transpiration rate, instant water-use efficiency, and canopy photosynthetic NUE were higher, N remobilization of the upper and middle canopy leaves was reduced, and the leaf N content was high in the N-efficient cultivars. A higher ratio of the N extinction coefficient (KN) to KL reflects the assimilation ability of the N-efficient winter wheat cultivars, resulting in improved canopy structure and distribution of light and N, higher 1000-grain weight and grain yield, and significantly increased light and NUE. An improved match between gradients of light and N in the leaf canopy promotes balanced C and N metabolism and reduces energy and nutrient losses. This should be a goal when breeding N-efficient wheat cultivars and implementing tillage regimes

    Data_Sheet_1_Canopy light distribution effects on light use efficiency in wheat and its mechanism.docx

    No full text
    Optimizing canopy light distribution (CLD) has manifested improved light utility and yield without modifying other inputs. Nonetheless, molecular mechanisms working at cellular and organelle level remain to be elucidated. The current study aimed to assess the effect of CLD on photosynthetic performance and yield of wheat, and to investigate into the molecular mechanism underlying the photosynthetically active radiation (PAR)–use efficiency (PUE) at optimized CLD. Wheat was planted in two rows having different spacing [R1 (15 cm) and R2 (25 cm)] to simulate different CLD. Flag and penultimate leaves were subjected to chloroplast proteomics analysis. An increase in row spacing positively affects CLD. A decrease (16.64%) of PAR interception in the upper layer, an increase (19.76%) in the middle layer, improved PUE (12.08%), and increased yield (9.38%) were recorded. The abundance of proteins associated with photosynthetic electron transport, redox state, and carbon-nitrogen assimilation was differentially altered by CLD optimization. In the penultimate leaves, R2 reduced the abundance of photosystem II (PSII) light-harvesting proteins, PSII-subunits, and increased the photosystem I (PSI) light-harvesting proteins, NAD(P)H quinone oxidoreductase (NQO) and enzymes involved in carbon assimilation compared to R1. Additionally, leaf stomatal conductance increased. Altogether, these findings demonstrated that the regulation of chloroplast proteome is intimately linked to light utilization, which provide basis for genetic manipulation of crop species for better adaptation and improvement of cultivation strategies.</p

    DataSheet_1_Effects of elevated atmospheric [CO2] on grain starch characteristics in different specialized wheat.docx

    No full text
    The increasing atmospheric [CO2] poses great challenges to wheat production. Currently, the response of starch characteristics in different specialized wheat cultivars to elevated [CO2], as well as the underlying physiological and molecular mechanisms remains unclear. Therefore, an experiment was conducted with open-top chambers to study the effects of ambient [CO2] [a(CO2)] and elevated [CO2] [e(CO2)] on photosynthetic performance, yield and starch characteristics of bread wheat (Zhengmai 369, ZM369) and biscuit wheat (Yangmai 15, YM15) from 2020 to 2022. The results demonstrated a significant improvement in photosynthetic performance, yield, amylose and amylopectin content, volume ratio of large granules under e[CO2]. Moreover, e[CO2] upregulated the gene expression and enzyme activities of GBSS (Granule-bound starch synthase) and SSS (Soluble starch synthase), increased starch pasting viscosity, gelatinization enthalpy and crystallinity. Compared to YM15, ZM369 exhibited a higher upregulation of GBSSI, greater increase in amylose content and volume ratio of large granules, as well as higher gelatinization enthalpy and crystallinity. However, ZM369 showed a lower increase in amylopectin content and a lower upregulation of SSSI and SSSII. Correlation analysis revealed amylose and amylopectin content had a positive correlation with GBSS and SSS, respectively, a significant positively correlation among the amylose and amylopectin content, starch granule volume, and pasting properties. In conclusion, these changes may enhance the utilization value of biscuit wheat but exhibit an opposite effect on bread wheat. The results provide a basis for selecting suitable wheat cultivars and ensuring food security under future climate change conditions.</p

    Datasets on Irregular Migration and Irregular Migrants in the EU

    No full text
    The evidence produced during the recent migration crisis in Europe is often based on datasets that have intrinsic limitations of coverage and availability, and that capture the complex phenomenon of migration from different perspectives. Simple questions such as “What is the number of migrants in the European Union (EU)?” cannot be answered by providing one single number, but a set of numbers where each number tells a different part of the story. Besides trying to expand the availability of data on migration, it is important to be aware of the characteristics of the existing datasets since knowledge of this determines the type of analysis and conclusions that can be drawn from the data. This paper describes the main datasets that can be used to quantify trends of irregular migration and indirectly also the stock of irregular migrants in the EU. The review covers only datasets that are openly available and have supra-national relevance.JRC.E.6-Demography, Migration and Governanc

    Web-based interactive analysis and visualisation of Earth Observation data at petabyte scale

    No full text
    The Copernicus programme of the European Union with its fleet of Sentinel satellites for monitoring land, ocean, and atmosphere with applications from environment monitoring to emergency response is generating Terabytes of free and open data on a daily basis. The Joint Research Centre (JRC) of the European Commission has developed a prototype Joint Earth Observation Data and Processing platform (JEODPP) to enable its knowledge production units to process and analyse global geospatial data at Petabyte scale in support to EU policy needs. In the framework of a collaboration between CERN and JRC, the EOS distributed file system enables high data throughput between the processing nodes and the storage servers. The performance of the JEODPP is analysed on use-cases in the context of interactive and batch processing based on docker containerisation and managed by the HTCondor workload manager. Web-based interactive analysis and visualisation of the Copernicus data on the EOS repository is obtained via Jupyter Notebooks connected to distributed backend processing servers. The process distribution and real-time visualisation of the results on interactive maps is achieved via custom interactive widget like IPyLeaflet used in the Jupyter notebooks. This way the data analysis capability of the JEODPP can be shared with internal or remote user groups.JRC.I.3-Text and Data Minin
    corecore