28 research outputs found

    Heat Transfer and Temperature Characteristics of a Working Digital Camera

    No full text
    Digital cameras represented by industrial cameras are widely used as image acquisition sensors in the field of image-based mechanics measurement, and their thermal effect inevitably induces thermal-induced errors of the mechanics measurement. To deeply understand the errors, the research for digital camera’s thermal effect is necessary. This study systematically investigated the heat transfer processes and temperature characteristics of a working digital camera. Concretely, based on the temperature distribution of a typical working digital camera, the heat transfer of the working digital camera was investigated, and a model describing the temperature variation and distribution was presented and verified experimentally. With this model, the thermal equilibrium time and thermal equilibrium temperature of the camera system were calculated. Then, the influences of thermal parameters of digital camera and environmental temperature on the temperature characteristics of working digital camera were simulated and experimentally investigated. The theory analysis and experimental results demonstrate that the presented model can accurately describe the temperature characteristics and further calculate the thermal equilibrium state of working digital camera, all of which contribute to guiding mechanics measurement and thermal design based on such camera sensors

    Structural Relatedness of Distinct Determinants Recognized by Monoclonal Antibody TP25.99 on ß\u3csub\u3e2\u3c/sub\u3e-Microglobulin-Associated and ß\u3csub\u3e2\u3c/sub\u3e-Microglobulin-Free HLA Class I Heavy Chains

    Get PDF
    The association of HLA class I heavy chains with ß2-microglobulin (ß2m) changes their antigenic profile. As a result, Abs react with either ß2m-free or ß2m-associated HLA class I heavy chains. An exception to this rule is the mAb TP25.99, which reacts with both ß2m-associated and ß2m-free HLA class I heavy chains. The reactivity with ß2m-associated HLA class I heavy chains is mediated by a conformational determinant expressed on all HLA-A, -B, and -C Ags. This determinant has been mapped to amino acid residues 194–198 in the α3 domain. The reactivity with ß2m-free HLA class I heavy chains is mediated by a linear determinant expressed on all HLA-B Ags except the HLA-B73 allospecificity and on \u3c50% of HLA-A allospecificities. The latter determinant has been mapped to amino acid residues 239–242, 245, and 246 in the α3 domain. The conformational and the linear determinants share several structural features, but have no homology in their amino acid sequence. mAb TP25.99 represents the first example of a mAb recognizing two distinct and spatially distant determinants on a protein. The structural homology of a linear and a conformational determinant on an antigenic entity provides a molecular mechanism for the sharing of specificity by B and TCRs

    The miR-17-92 cluster regulates FOG-2 expression and inhibits proliferation of mouse embryonic cardiomyocytes

    No full text
    MicroRNAs (miRNAs) have gradually been recognized as regulators of embryonic development; however, relatively few miRNAs have been identified that regulate cardiac development. A series of recent papers have established an essential role for the miRNA-17-92 (miR-17-92) cluster of miRNAs in the development of the heart. Previous research has shown that the Friend of Gata-2 (FOG-2) is critical for cardiac development. To investigate the possibility that the miR-17-92 cluster regulates FOG-2 expression and inhibits proliferation in mouse embryonic cardiomyocytes we initially used bioinformatics to analyze 3’ untranslated regions (3’UTR) of FOG-2 to predict the potential of miR-17-92 to target it. We used luciferase assays to demonstrate that miR-17-5p and miR-20a of miR-17-92 interact with the predicted target sites in the 3’UTR of FOG-2. Furthermore, RT-PCR and Western blot were used to demonstrate the post-transcriptional regulation of FOG-2 by miR-17-92 in embryonic cardiomyocytes from E12.5-day pregnant C57BL/6J mice. Finally, EdU cell assays together with the FOG-2 rescue strategy were employed to evaluate the effect of proliferation on embryonic cardiomyocytes. We first found that the miR-17-5p and miR-20a of miR-17-92 directly target the 3’UTR of FOG-2 and post-transcriptionally repress the expression of FOG-2. Moreover, our findings demonstrated that over-expression of miR-17-92 may inhibit cell proliferation via post-transcriptional repression of FOG-2 in embryonic cardiomyocytes. These results indicate that the miR-17-92 cluster regulates the expression of FOG-2 protein and suggest that the miR-17-92 cluster might play an important role in heart development

    Therapeutic Interaction of Apatinib and Chidamide in T-Cell Acute Lymphoblastic Leukemia through Interference with Mitochondria Associated Biogenesis and Intrinsic Apoptosis

    No full text
    T-cell acute lymphoblastic leukemia (T-ALL) shows poor clinical outcome and has limited therapeutic options, indicating that new treatment approaches for this disease are urgently required. Our previous study demonstrated that apatinib, an orally selective VEGFR-2 antagonist, is highly effective in T-ALL. Additionally, chidamide, a histone deacetylase inhibitor, has proven to be cytotoxic against T-ALL in preclinical and clinical settings. However, whether the therapeutic interaction of apatinib and chidamide in T-ALL remains unknown. In this study, apatinib and chidamide acted additively to decrease cell viability and induce apoptosis in T-ALL in vitro. Notably, compared with apatinib or chidamide alone, the combinational regimen was more efficient in abrogating the leukemia burden in the spleen and bone marrow of T-ALL patient-derived xenograft (PDX) models. Mechanistically, the additive antileukemia effect of apatinib and chidamide was associated with suppression of mitochondrial respiration and downregulation of the abundance levels of several rate-limiting enzymes that are involved in the citric acid cycle and oxidative phosphorylation (OXPHOS). In addition, apatinib enhanced the antileukemia effect of chidamide on T-ALL via activation of the mitochondria-mediated apoptosis pathway and impediment of mitochondrial biogenesis. Taken together, the study provides a potential role for apatinib in combination with chidamide in the management of T-ALL and warrants further clinical evaluations of this combination in patients with T-ALL

    Decreases in molecular diffusion, perfusion fraction and perfusion-related diffusion in fibrotic livers: a prospective clinical intravoxel incoherent motion MR imaging study.

    No full text
    PURPOSE: This study was aimed to determine whether pure molecular-based diffusion coefficient (D) and perfusion-related diffusion parameters (perfusion fraction f, perfusion-related diffusion coefficient D*) differ in healthy livers and fibrotic livers through intra-voxel incoherent motion (IVIM) MR imaging. MATERIAL AND METHODS: 17 healthy volunteers and 34 patients with histopathologically confirmed liver fibrosis patients (stage 1 = 14, stage 2 = 8, stage 3 & 4 = 12, METAVIR grading) were included. Liver MR imaging was performed at 1.5-T. IVIM diffusion weighted imaging sequence was based on standard single-shot DW spin echo-planar imaging, with ten b values of 10, 20, 40, 60, 80, 100, 150, 200, 400, 800 sec/mm2 respectively. Pixel-wise realization and regions-of-interest based quantification of IVIM parameters were performed. RESULTS: D, f, and D* in healthy volunteer livers and patient livers were 1.096±0.155 vs 0.917±0.152 (10(-3) mm2/s, p = 0.0015), 0.164±0.021 vs 0.123±0.029 (p<0.0001), and 13.085±2.943 vs 9.423±1.737 (10(-3) mm2/s, p<0.0001) respectively, all significantly lower in fibrotic livers. As the fibrosis severity progressed, D, f, and D* values decreased, with a trend significant for f and D*. CONCLUSION: Fibrotic liver is associated with lower pure molecular diffusion, lower perfusion volume fraction, and lower perfusion-related diffusion. The decrease of f and D* in the liver is significantly associated liver fibrosis severity
    corecore