10 research outputs found

    Coal and Gangue Recognition Method Based on Local Texture Classification Network for Robot Picking

    No full text
    Coal gangue is a kind of industrial waste in the coal mine preparation process. Compared to conventional manual or machine-based separation technology, vision-based methods and robotic grasping are superior in cost and maintenance. However, the existing methods may have a poor recognition accuracy problem in diverse environments since coals and gangues’ apparent features can be unreliable. This paper analyzes the current methods and proposes a vision-based coal and gangue recognition model LTC-Net for separation systems. The preprocessed full-scale images are divided into n × n local texture images since coals and gangues differ more on a smaller scale, enabling the model to overcome the influence of characteristics that tend to change with the environment. A VGG16-based model is trained to classify the local texture images through a voting classifier. Prediction is given by a threshold. Experiments based on multi-environment datasets show higher accuracy and stability of our method compared to existing methods. The effect of n and t is also discussed

    Properties of realgar bioleaching using an extremely acidophilic bacterium and its antitumor mechanism as an anticancer agent

    No full text
    Abstract Realgar is a naturally occurring arsenic sulfide (or Xionghuang, in Chinese). It contains over 90% tetra-arsenic tetra-sulfide (As4S4). Currently, realgar has been confirmed the antitumor activities, both in vitro and in vivo, of realgar extracted using Acidithiobacillus ferrooxidans (A. ferrooxidans). Bioleaching, a new technology to greatly improve the use rate of arsenic extraction from realgar using bacteria, is a novel methodology that addressed a limitation of the traditional method for realgar preparation. The present systematic review reports on the research progress in realgar bioleaching and its antitumor mechanism as an anticancer agent. A total of 93 research articles that report on the biological activity of extracts from realgar using bacteria and its preparation were presented in this review. The realgar bioleaching solution (RBS) works by inducing apoptosis when it is used to treat tumor cells in vitro and in vivo. When it is used to treat animal model organisms in vivo, such as mice and Caenorhabditis elegans, tumor tissues grew more slowly, with mass necrosis. Meanwhile, the agent also showed obvious inhibition of tumor cell growth. Bioleaching technology greatly improves the utilization of realgar and is a novel methodology to improve the traditional method
    corecore