393 research outputs found

    Frugal Optimization for Cost-related Hyperparameters

    Full text link
    The increasing demand for democratizing machine learning algorithms calls for hyperparameter optimization (HPO) solutions at low cost. Many machine learning algorithms have hyperparameters which can cause a large variation in the training cost. But this effect is largely ignored in existing HPO methods, which are incapable to properly control cost during the optimization process. To address this problem, we develop a new cost-frugal HPO solution. The core of our solution is a simple but new randomized direct-search method, for which we prove a convergence rate of O(dK)O(\frac{\sqrt{d}}{\sqrt{K}}) and an O(dÏĩ−2)O(d\epsilon^{-2})-approximation guarantee on the total cost. We provide strong empirical results in comparison with state-of-the-art HPO methods on large AutoML benchmarks.Comment: 29 pages (including supplementary appendix

    FairAutoML: Embracing Unfairness Mitigation in AutoML

    Full text link
    In this work, we propose an Automated Machine Learning (AutoML) system to search for models not only with good prediction accuracy but also fair. We first investigate the necessity and impact of unfairness mitigation in the AutoML context. We establish the FairAutoML framework. The framework provides a novel design based on pragmatic abstractions, which makes it convenient to incorporate existing fairness definitions, unfairness mitigation techniques, and hyperparameter search methods into the model search and evaluation process. Following this framework, we develop a fair AutoML system based on an existing AutoML system. The augmented system includes a resource allocation strategy to dynamically decide when and on which models to conduct unfairness mitigation according to the prediction accuracy, fairness, and resource consumption on the fly. Extensive empirical evaluation shows that our system can achieve a good `fair accuracy' and high resource efficiency.Comment: 18 pages (including 6 pages of appendixes

    Factors Related to Pre-operative Comfort of Older Adults with Hip Fracture in Wenzhou, China

    Get PDF
    āļšāļ—āļ„āļąāļ”āļĒāđˆāļ­ āļ§āļąāļ•āļ–āļļāļ›āļĢāļ°āļŠāļ‡āļ„āđŒ: āđ€āļžāļ·āđˆāļ­āļĻāļķāļāļĐāļēāļĢāļ°āļ”āļąāļšāļ„āļ§āļēāļĄāļŠāļļāļ‚āļŠāļšāļēāļĒāļāđˆāļ­āļ™āļāļēāļĢāļœāđˆāļēāļ•āļąāļ”āđāļĨāļ°āļ›āļąāļˆāļˆāļąāļĒāļ—āļĩāđˆāļŠāļąāļĄāļžāļąāļ™āļ˜āđŒāđƒāļ™āļœāļđāđ‰āļ›āđˆāļ§āļĒāļŠāļđāļ‡āļ­āļēāļĒāļļāļ—āļĩāđˆāļāļĢāļ°āļ”āļđāļāļŠāļ°āđ‚āļžāļāļŦāļąāļ āđƒāļ™āđ€āļĄāļ·āļ­āļ‡āđ€āļŦāļ§āļīāļ™āđ‚āļˆāļ§ āļ›āļĢāļ°āđ€āļ—āļĻāļˆāļĩāļ™ āļ§āļīāļ˜āļĩāļāļēāļĢāļĻāļķāļāļĐāļē: āļ•āļąāļ§āļ­āļĒāđˆāļēāļ‡ āļ„āļ·āļ­ āļœāļđāđ‰āļŠāļđāļ‡āļ­āļēāļĒāļļāļ—āļĩāđˆāļāļĢāļ°āļ”āļđāļāļŠāļ°āđ‚āļžāļāļŦāļąāļāđāļĨāļ°āļ•āļĢāļ‡āļ•āļēāļĄāđ€āļāļ“āļ‘āđŒāļāļēāļĢāļ„āļąāļ”āđ€āļĨāļ·āļ­āļāđ€āļ‚āđ‰āļēāļĻāļķāļāļĐāļē āļˆāļģāļ™āļ§āļ™ 128 āļ„āļ™ āļˆāļēāļāļāļēāļĢāļŠāļļāđˆāļĄāļ­āļĒāđˆāļēāļ‡āļ‡āđˆāļēāļĒ āļĢāļ§āļšāļĢāļ§āļĄāļ‚āđ‰āļ­āļĄāļđāļĨāļĢāļ°āļŦāļ§āđˆāļēāļ‡āđ€āļĄāļĐāļēāļĒāļ™ - āļĄāļīāļ–āļļāļ™āļēāļĒāļ™ āļ„.āļĻ 2022 āđ‚āļ”āļĒāđƒāļŠāđ‰āđāļšāļšāļŠāļ­āļšāļ–āļēāļĄāļ‚āđ‰āļ­āļĄāļđāļĨāļŠāđˆāļ§āļ™āļšāļļāļ„āļ„āļĨ āđāļšāļšāļ„āļąāļ”āļāļĢāļ­āļ‡ āđāļšāļšāļŠāļ­āļšāļ–āļēāļĄāļ„āļ§āļēāļĄāļĢāļđāđ‰āđ€āļāļĩāđˆāļĒāļ§āļāļąāļšāļāļēāļĢāļœāđˆāļēāļ•āļąāļ”āļāļĢāļ°āļ”āļđāļāļŠāļ°āđ‚āļžāļ āļ„āļ§āļēāļĄāļžāļĢāđ‰āļ­āļĄāļ•āđˆāļ­āļāļēāļĢāļœāđˆāļēāļ•āļąāļ” āļ„āļ§āļēāļĄāļŠāļļāļ‚āļŠāļšāļēāļĒ āđāļĨāļ°āļāļēāļĢāļŠāļ™āļąāļšāļŠāļ™āļļāļ™āļ—āļēāļ‡āļŠāļąāļ‡āļ„āļĄ āļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļ›āļąāļˆāļˆāļąāļĒāļŠāļąāļĄāļžāļąāļ™āļ˜āđŒāđ‚āļ”āļĒāļāļēāļĢāļ—āļ”āļŠāļ­āļšāļŠāđ€āļ›āļĩāļĒāļĢāđŒāđāļĄāļ™ āļœāļĨāļāļēāļĢāļĻāļķāļāļĐāļē: āļ„āļ§āļēāļĄāļŠāļļāļ‚āļŠāļšāļēāļĒāļāđˆāļ­āļ™āļāļēāļĢāļœāđˆāļēāļ•āļąāļ”āļ‚āļ­āļ‡āļœāļđāđ‰āļŠāļđāļ‡āļ­āļēāļĒāļļāļ­āļĒāļđāđˆāđƒāļ™āļĢāļ°āļ”āļąāļšāļ›āļēāļ™āļāļĨāļēāļ‡ (āļ„āđˆāļēāđ€āļ‰āļĨāļĩāđˆāļĒ = 68.50 Âą 7.34 āļˆāļēāļāļ—āļąāđ‰āļ‡āļŦāļĄāļ” 112 āļ„āļ°āđāļ™āļ™) āļžāļšāļ§āđˆāļēāļ„āļ§āļēāļĄāļŠāļļāļ‚āļŠāļšāļēāļĒāļāđˆāļ­āļ™āļāļēāļĢāļœāđˆāļēāļ•āļąāļ”āļŠāļąāļĄāļžāļąāļ™āļ˜āđŒāļ—āļēāļ‡āļšāļ§āļāļ­āļĒāđˆāļēāļ‡āļĄāļĩāļ™āļąāļĒāļŠāļģāļ„āļąāļāļ—āļēāļ‡āļŠāļ–āļīāļ•āļīāļāļąāļšāļ„āļ§āļēāļĄāļžāļĢāđ‰āļ­āļĄāļ•āđˆāļ­āļāļēāļĢāļœāđˆāļēāļ•āļąāļ” (r = 0.333, P-value < 0.001) āļ„āļ§āļēāļĄāļĢāļđāđ‰āđ€āļāļĩāđˆāļĒāļ§āļāļąāļšāļāļēāļĢāļœāđˆāļēāļ•āļąāļ”āļāļĢāļ°āļ”āļđāļāļŠāļ°āđ‚āļžāļ (r = 0.296, P-value < 0.001) āđāļĨāļ°āļāļēāļĢāļŠāļ™āļąāļšāļŠāļ™āļļāļ™āļ—āļēāļ‡āļŠāļąāļ‡āļ„āļĄ (r = 0.226, P-value = 0.010) āļŠāļĢāļļāļ›: āļ„āļ§āļēāļĄāļŠāļļāļ‚āļŠāļšāļēāļĒāļāđˆāļ­āļ™āļāļēāļĢāļœāđˆāļēāļ•āļąāļ”āļŠāļąāļĄāļžāļąāļ™āļ˜āđŒāļāļąāļšāļ„āļ§āļēāļĄāļžāļĢāđ‰āļ­āļĄāļ•āđˆāļ­āļāļēāļĢāļœāđˆāļēāļ•āļąāļ” āļ„āļ§āļēāļĄāļĢāļđāđ‰āđ€āļāļĩāđˆāļĒāļ§āļāļąāļšāļāļēāļĢāļœāđˆāļēāļ•āļąāļ”āļāļĢāļ°āļ”āļđāļāļŠāļ°āđ‚āļžāļ āđāļĨāļ°āļāļēāļĢāļŠāļ™āļąāļšāļŠāļ™āļļāļ™āļ—āļēāļ‡āļŠāļąāļ‡āļ„āļĄ āļœāļđāđ‰āļ›āđˆāļ§āļĒāļŠāļđāļ‡āļ­āļēāļĒāļļāļ—āļĩāđˆāļāļĢāļ°āļ”āļđāļāļŠāļ°āđ‚āļžāļāļŦāļąāļāļŠāļēāļĄāļēāļĢāļ–āļĄāļĩāļ„āļ§āļēāļĄāļŠāļļāļ‚āļŠāļšāļēāļĒāļāđˆāļ­āļ™āļāļēāļĢāļœāđˆāļēāļ•āļąāļ”āļ”āđ‰āļ§āļĒāļāļēāļĢāļŠāļ™āļąāļšāļŠāļ™āļļāļ™āļ„āļ§āļēāļĄāļžāļĢāđ‰āļ­āļĄāļ•āđˆāļ­āļāļēāļĢāļœāđˆāļēāļ•āļąāļ” āļ„āļ§āļēāļĄāļĢāļđāđ‰āđ€āļāļĩāđˆāļĒāļ§āļāļąāļšāļāļēāļĢāļœāđˆāļēāļ•āļąāļ”āļāļĢāļ°āļ”āļđāļāļŠāļ°āđ‚āļžāļ āđāļĨāļ°āļāļēāļĢāļŠāļ™āļąāļšāļŠāļ™āļļāļ™āļ—āļēāļ‡āļŠāļąāļ‡āļ„āļĄ   āļ„āļģāļŠāļģāļ„āļąāļ: āļœāļđāđ‰āļŠāļđāļ‡āļ­āļēāļĒāļļāļ—āļĩāđˆāļāļĢāļ°āļ”āļđāļāļŠāļ°āđ‚āļžāļāļŦāļąāļ; āļ„āļ§āļēāļĄāļŠāļ‚āļŠāļšāļēāļĒāļāđˆāļ­āļ™āļāļēāļĢāļœāđˆāļēāļ•āļąāļ”; āļ„āļ§āļēāļĄāļžāļĢāđ‰āļ­āļĄāļ•āđˆāļ­āļāļēāļĢāļœāđˆāļēāļ•āļąāļ”; āļ„āļ§āļēāļĄāļĢāļđāđ‰āđ€āļāļĩāđˆāļĒāļ§āļāļąāļšāļāļēāļĢāļœāđˆāļēāļ•āļąāļ”āļāļĢāļ°āļ”āļđāļāļŠāļ°āđ‚āļžāļ; āļāļēāļĢāļŠāļ™āļąāļšāļŠāļ™āļļāļ™āļ—āļēāļ‡āļŠāļąāļ‡āļ„āļĄ Abstract Objective: To determine level of pre-operative comfort and its related factors among older adult patients with hip fractures in Wenzhou, China. Method: Simple random sampling was used to recruit 128 older adults who had hip fractures and met the criteria. Data were collected from April to June 2022 using demographic data form, a screening questionnaire, and four questionnaires assessing knowledge about the hip operation, readiness for the operation, Kolcaba’s comfort level, and social support. Spearman correlation analysis was used to examine correlations. Result: Mean score of the pre-operative comfort was at a moderate level (mean = 68.50 Âą 7.34 out of 112 points). Pre-operative comfort was significantly positively correlated with readiness for operation (r = 0.333, P-value < 0.001), knowledge about hip fracture (r = 0.296, P-value < 0.001), and social support (r = 0.226, P-value = 0.010). Conclusion: Pre-operative comfort was correlated with readiness for operation, knowledge about hip fracture, and social support. The patients with hip fracture undergoing the surgery could have more comfort through enhancing readiness for the operation, knowledge about hip fracture operation, and social support. Keywords: older adults with hip fractures; pre-operative comfort; readiness for operation; knowledge about hip fracture; social suppor

    Seamlessly Unifying Attributes and Items: Conversational Recommendation for Cold-Start Users

    Full text link
    Static recommendation methods like collaborative filtering suffer from the inherent limitation of performing real-time personalization for cold-start users. Online recommendation, e.g., multi-armed bandit approach, addresses this limitation by interactively exploring user preference online and pursuing the exploration-exploitation (EE) trade-off. However, existing bandit-based methods model recommendation actions homogeneously. Specifically, they only consider the items as the arms, being incapable of handling the item attributes, which naturally provide interpretable information of user's current demands and can effectively filter out undesired items. In this work, we consider the conversational recommendation for cold-start users, where a system can both ask the attributes from and recommend items to a user interactively. This important scenario was studied in a recent work. However, it employs a hand-crafted function to decide when to ask attributes or make recommendations. Such separate modeling of attributes and items makes the effectiveness of the system highly rely on the choice of the hand-crafted function, thus introducing fragility to the system. To address this limitation, we seamlessly unify attributes and items in the same arm space and achieve their EE trade-offs automatically using the framework of Thompson Sampling. Our Conversational Thompson Sampling (ConTS) model holistically solves all questions in conversational recommendation by choosing the arm with the maximal reward to play. Extensive experiments on three benchmark datasets show that ConTS outperforms the state-of-the-art methods Conversational UCB (ConUCB) and Estimation-Action-Reflection model in both metrics of success rate and average number of conversation turns.Comment: TOIS 202

    2D materials for nanoelectronics: A first-principles investigation

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    HyperTime: Hyperparameter Optimization for Combating Temporal Distribution Shifts

    Full text link
    In this work, we propose a hyperparameter optimization method named \emph{HyperTime} to find hyperparameters robust to potential temporal distribution shifts in the unseen test data. Our work is motivated by an important observation that it is, in many cases, possible to achieve temporally robust predictive performance via hyperparameter optimization. Based on this observation, we leverage the `worst-case-oriented' philosophy from the robust optimization literature to help find such robust hyperparameter configurations. HyperTime imposes a lexicographic priority order on average validation loss and worst-case validation loss over chronological validation sets. We perform a theoretical analysis on the upper bound of the expected test loss, which reveals the unique advantages of our approach. We also demonstrate the strong empirical performance of the proposed method on multiple machine learning tasks with temporal distribution shifts.Comment: 19 pages, 7 figure
    • â€Ķ
    corecore