393 research outputs found
Frugal Optimization for Cost-related Hyperparameters
The increasing demand for democratizing machine learning algorithms calls for
hyperparameter optimization (HPO) solutions at low cost. Many machine learning
algorithms have hyperparameters which can cause a large variation in the
training cost. But this effect is largely ignored in existing HPO methods,
which are incapable to properly control cost during the optimization process.
To address this problem, we develop a new cost-frugal HPO solution. The core of
our solution is a simple but new randomized direct-search method, for which we
prove a convergence rate of and an
-approximation guarantee on the total cost. We provide
strong empirical results in comparison with state-of-the-art HPO methods on
large AutoML benchmarks.Comment: 29 pages (including supplementary appendix
FairAutoML: Embracing Unfairness Mitigation in AutoML
In this work, we propose an Automated Machine Learning (AutoML) system to
search for models not only with good prediction accuracy but also fair. We
first investigate the necessity and impact of unfairness mitigation in the
AutoML context. We establish the FairAutoML framework. The framework provides a
novel design based on pragmatic abstractions, which makes it convenient to
incorporate existing fairness definitions, unfairness mitigation techniques,
and hyperparameter search methods into the model search and evaluation process.
Following this framework, we develop a fair AutoML system based on an existing
AutoML system. The augmented system includes a resource allocation strategy to
dynamically decide when and on which models to conduct unfairness mitigation
according to the prediction accuracy, fairness, and resource consumption on the
fly. Extensive empirical evaluation shows that our system can achieve a good
`fair accuracy' and high resource efficiency.Comment: 18 pages (including 6 pages of appendixes
Factors Related to Pre-operative Comfort of Older Adults with Hip Fracture in Wenzhou, China
āļāļāļāļąāļāļĒāđāļ
āļ§āļąāļāļāļļāļāļĢāļ°āļŠāļāļāđ: āđāļāļ·āđāļāļĻāļķāļāļĐāļēāļĢāļ°āļāļąāļāļāļ§āļēāļĄāļŠāļļāļāļŠāļāļēāļĒāļāđāļāļāļāļēāļĢāļāđāļēāļāļąāļāđāļĨāļ°āļāļąāļāļāļąāļĒāļāļĩāđāļŠāļąāļĄāļāļąāļāļāđāđāļāļāļđāđāļāđāļ§āļĒāļŠāļđāļāļāļēāļĒāļļāļāļĩāđāļāļĢāļ°āļāļđāļāļŠāļ°āđāļāļāļŦāļąāļ āđāļāđāļĄāļ·āļāļāđāļŦāļ§āļīāļāđāļāļ§ āļāļĢāļ°āđāļāļĻāļāļĩāļ āļ§āļīāļāļĩāļāļēāļĢāļĻāļķāļāļĐāļē: āļāļąāļ§āļāļĒāđāļēāļ āļāļ·āļ āļāļđāđāļŠāļđāļāļāļēāļĒāļļāļāļĩāđāļāļĢāļ°āļāļđāļāļŠāļ°āđāļāļāļŦāļąāļāđāļĨāļ°āļāļĢāļāļāļēāļĄāđāļāļāļāđāļāļēāļĢāļāļąāļāđāļĨāļ·āļāļāđāļāđāļēāļĻāļķāļāļĐāļē āļāļģāļāļ§āļ 128 āļāļ āļāļēāļāļāļēāļĢāļŠāļļāđāļĄāļāļĒāđāļēāļāļāđāļēāļĒ āļĢāļ§āļāļĢāļ§āļĄāļāđāļāļĄāļđāļĨāļĢāļ°āļŦāļ§āđāļēāļāđāļĄāļĐāļēāļĒāļ - āļĄāļīāļāļļāļāļēāļĒāļ āļ.āļĻ 2022 āđāļāļĒāđāļāđāđāļāļāļŠāļāļāļāļēāļĄāļāđāļāļĄāļđāļĨāļŠāđāļ§āļāļāļļāļāļāļĨ āđāļāļāļāļąāļāļāļĢāļāļ āđāļāļāļŠāļāļāļāļēāļĄāļāļ§āļēāļĄāļĢāļđāđāđāļāļĩāđāļĒāļ§āļāļąāļāļāļēāļĢāļāđāļēāļāļąāļāļāļĢāļ°āļāļđāļāļŠāļ°āđāļāļ āļāļ§āļēāļĄāļāļĢāđāļāļĄāļāđāļāļāļēāļĢāļāđāļēāļāļąāļ āļāļ§āļēāļĄāļŠāļļāļāļŠāļāļēāļĒ āđāļĨāļ°āļāļēāļĢāļŠāļāļąāļāļŠāļāļļāļāļāļēāļāļŠāļąāļāļāļĄ āļ§āļīāđāļāļĢāļēāļ°āļŦāđāļāļąāļāļāļąāļĒāļŠāļąāļĄāļāļąāļāļāđāđāļāļĒāļāļēāļĢāļāļāļŠāļāļāļŠāđāļāļĩāļĒāļĢāđāđāļĄāļ āļāļĨāļāļēāļĢāļĻāļķāļāļĐāļē: āļāļ§āļēāļĄāļŠāļļāļāļŠāļāļēāļĒāļāđāļāļāļāļēāļĢāļāđāļēāļāļąāļāļāļāļāļāļđāđāļŠāļđāļāļāļēāļĒāļļāļāļĒāļđāđāđāļāļĢāļ°āļāļąāļāļāļēāļāļāļĨāļēāļ (āļāđāļēāđāļāļĨāļĩāđāļĒ = 68.50 Âą 7.34 āļāļēāļāļāļąāđāļāļŦāļĄāļ 112 āļāļ°āđāļāļ) āļāļāļ§āđāļēāļāļ§āļēāļĄāļŠāļļāļāļŠāļāļēāļĒāļāđāļāļāļāļēāļĢāļāđāļēāļāļąāļāļŠāļąāļĄāļāļąāļāļāđāļāļēāļāļāļ§āļāļāļĒāđāļēāļāļĄāļĩāļāļąāļĒāļŠāļģāļāļąāļāļāļēāļāļŠāļāļīāļāļīāļāļąāļāļāļ§āļēāļĄāļāļĢāđāļāļĄāļāđāļāļāļēāļĢāļāđāļēāļāļąāļ (r = 0.333, P-value < 0.001) āļāļ§āļēāļĄāļĢāļđāđāđāļāļĩāđāļĒāļ§āļāļąāļāļāļēāļĢāļāđāļēāļāļąāļāļāļĢāļ°āļāļđāļāļŠāļ°āđāļāļ (r = 0.296, P-value < 0.001) āđāļĨāļ°āļāļēāļĢāļŠāļāļąāļāļŠāļāļļāļāļāļēāļāļŠāļąāļāļāļĄ (r = 0.226, P-value = 0.010) āļŠāļĢāļļāļ: āļāļ§āļēāļĄāļŠāļļāļāļŠāļāļēāļĒāļāđāļāļāļāļēāļĢāļāđāļēāļāļąāļāļŠāļąāļĄāļāļąāļāļāđāļāļąāļāļāļ§āļēāļĄāļāļĢāđāļāļĄāļāđāļāļāļēāļĢāļāđāļēāļāļąāļ āļāļ§āļēāļĄāļĢāļđāđāđāļāļĩāđāļĒāļ§āļāļąāļāļāļēāļĢāļāđāļēāļāļąāļāļāļĢāļ°āļāļđāļāļŠāļ°āđāļāļ āđāļĨāļ°āļāļēāļĢāļŠāļāļąāļāļŠāļāļļāļāļāļēāļāļŠāļąāļāļāļĄ āļāļđāđāļāđāļ§āļĒāļŠāļđāļāļāļēāļĒāļļāļāļĩāđāļāļĢāļ°āļāļđāļāļŠāļ°āđāļāļāļŦāļąāļāļŠāļēāļĄāļēāļĢāļāļĄāļĩāļāļ§āļēāļĄāļŠāļļāļāļŠāļāļēāļĒāļāđāļāļāļāļēāļĢāļāđāļēāļāļąāļāļāđāļ§āļĒāļāļēāļĢāļŠāļāļąāļāļŠāļāļļāļāļāļ§āļēāļĄāļāļĢāđāļāļĄāļāđāļāļāļēāļĢāļāđāļēāļāļąāļ āļāļ§āļēāļĄāļĢāļđāđāđāļāļĩāđāļĒāļ§āļāļąāļāļāļēāļĢāļāđāļēāļāļąāļāļāļĢāļ°āļāļđāļāļŠāļ°āđāļāļ āđāļĨāļ°āļāļēāļĢāļŠāļāļąāļāļŠāļāļļāļāļāļēāļāļŠāļąāļāļāļĄ
Â
āļāļģāļŠāļģāļāļąāļ: āļāļđāđāļŠāļđāļāļāļēāļĒāļļāļāļĩāđāļāļĢāļ°āļāļđāļāļŠāļ°āđāļāļāļŦāļąāļ; āļāļ§āļēāļĄāļŠāļāļŠāļāļēāļĒāļāđāļāļāļāļēāļĢāļāđāļēāļāļąāļ; āļāļ§āļēāļĄāļāļĢāđāļāļĄāļāđāļāļāļēāļĢāļāđāļēāļāļąāļ; āļāļ§āļēāļĄāļĢāļđāđāđāļāļĩāđāļĒāļ§āļāļąāļāļāļēāļĢāļāđāļēāļāļąāļāļāļĢāļ°āļāļđāļāļŠāļ°āđāļāļ; āļāļēāļĢāļŠāļāļąāļāļŠāļāļļāļāļāļēāļāļŠāļąāļāļāļĄ
Abstract
Objective: To determine level of pre-operative comfort and its related factors among older adult patients with hip fractures in Wenzhou, China. Method: Simple random sampling was used to recruit 128 older adults who had hip fractures and met the criteria. Data were collected from April to June 2022 using demographic data form, a screening questionnaire, and four questionnaires assessing knowledge about the hip operation, readiness for the operation, Kolcabaâs comfort level, and social support. Spearman correlation analysis was used to examine correlations. Result: Mean score of the pre-operative comfort was at a moderate level (mean = 68.50 Âą 7.34 out of 112 points). Pre-operative comfort was significantly positively correlated with readiness for operation (r = 0.333, P-value < 0.001), knowledge about hip fracture (r = 0.296, P-value < 0.001), and social support (r = 0.226, P-value = 0.010). Conclusion: Pre-operative comfort was correlated with readiness for operation, knowledge about hip fracture, and social support. The patients with hip fracture undergoing the surgery could have more comfort through enhancing readiness for the operation, knowledge about hip fracture operation, and social support.
Keywords: older adults with hip fractures; pre-operative comfort; readiness for operation; knowledge about hip fracture; social suppor
Seamlessly Unifying Attributes and Items: Conversational Recommendation for Cold-Start Users
Static recommendation methods like collaborative filtering suffer from the
inherent limitation of performing real-time personalization for cold-start
users. Online recommendation, e.g., multi-armed bandit approach, addresses this
limitation by interactively exploring user preference online and pursuing the
exploration-exploitation (EE) trade-off. However, existing bandit-based methods
model recommendation actions homogeneously. Specifically, they only consider
the items as the arms, being incapable of handling the item attributes, which
naturally provide interpretable information of user's current demands and can
effectively filter out undesired items. In this work, we consider the
conversational recommendation for cold-start users, where a system can both ask
the attributes from and recommend items to a user interactively. This important
scenario was studied in a recent work. However, it employs a hand-crafted
function to decide when to ask attributes or make recommendations. Such
separate modeling of attributes and items makes the effectiveness of the system
highly rely on the choice of the hand-crafted function, thus introducing
fragility to the system. To address this limitation, we seamlessly unify
attributes and items in the same arm space and achieve their EE trade-offs
automatically using the framework of Thompson Sampling. Our Conversational
Thompson Sampling (ConTS) model holistically solves all questions in
conversational recommendation by choosing the arm with the maximal reward to
play. Extensive experiments on three benchmark datasets show that ConTS
outperforms the state-of-the-art methods Conversational UCB (ConUCB) and
Estimation-Action-Reflection model in both metrics of success rate and average
number of conversation turns.Comment: TOIS 202
2D materials for nanoelectronics: A first-principles investigation
Ph.DDOCTOR OF PHILOSOPH
HyperTime: Hyperparameter Optimization for Combating Temporal Distribution Shifts
In this work, we propose a hyperparameter optimization method named
\emph{HyperTime} to find hyperparameters robust to potential temporal
distribution shifts in the unseen test data. Our work is motivated by an
important observation that it is, in many cases, possible to achieve temporally
robust predictive performance via hyperparameter optimization. Based on this
observation, we leverage the `worst-case-oriented' philosophy from the robust
optimization literature to help find such robust hyperparameter configurations.
HyperTime imposes a lexicographic priority order on average validation loss and
worst-case validation loss over chronological validation sets. We perform a
theoretical analysis on the upper bound of the expected test loss, which
reveals the unique advantages of our approach. We also demonstrate the strong
empirical performance of the proposed method on multiple machine learning tasks
with temporal distribution shifts.Comment: 19 pages, 7 figure
- âĶ