72 research outputs found

    Poly(2, 5-benzimidazole)-based polymer electrolyte membranes for high-temperature fuel cell applications

    Get PDF
    Polymer electrolyte membrane fuel cells (PEMFCs) are one of the most promising clean technologies under development. However, the main obstacles for commercialising PEMFCs are largely attributed to the technical limitations and cost of current PEM materials such as Nafion. Novel poly(2,5-benzimidazole) (ABPBI)/POSS based polymer composite electrolyte membranes with excellent mechanical and conductivity properties were developed in this project including (I) ABPBI, polybenzimidazole (PBI) and their copolymers were synthesised by solution polymerisation and their chemical structures were confirmed by FTIR and elemental analysis. ABPBI/ActaAmmonium POSS (ABPBI/AM) and ABPBI/TriSilanolPhenyl POSS (ABPBI/SO) composites were also synthesised in situ. High quality polymer and composite membranes were fabricated by a direct cast method; and (II) The mechanical and thermal properties, microstructure and morphology, water and H3PO4 absorbility and proton conductivity of phosphoric acid doped and undoped ABPBI and ABPBI/POSS composite membranes were investigated. SEM/TEM micrographs showed that a uniform dispersion of POSS nano particles in ABPBI polymer matrix was achieved. The best performances on both mechanical properties and proton conductivities were obtained from the ABPBI/AM composite membrane with 3 wt% of POSS (ABPBI/3AM). It was found that both the water and H3PO4 uptakes were increased significantly with the addition of POSS due to formation of hydrogen bonds between the POSS and H2O/H3PO4, which played a critical role in the improvement of the conductivity of the composite membranes at temperatures over 100oC. ABPBI/3AM membranes with H3PO4 uptake above 117% showed best proton conductivities at both hydrous and anhydrous conditions from room temperature to 160oC, which is comparable with the conductivity of commercial Nafion 117 at 20oC in water-saturated condition, indicating that these composite membranes could be excellent candidates as a polymer electrolyte membrane for high temperature applications. A new mechanism for illustrating the improved proton conductivity of composite membranes was also developed

    High-temperature polymer electrolyte membranes based on poly(2,5-benzimidazole) (ABPBI) and POSS incorporated ionic liquid

    Get PDF
    This paper reported a method to modify polyhedral oligomeric silsesquioxane (POSS) particle into POSS ionic liquid (POSS-IL) and its incorporation into ABPBI/H3PO4 system to enhance the proton conductivities and mechanical properties of the membranes simultaneously. It was found that good dispersion of POSS-IL in the polymer matrix increased the tensile strength and Young’s modulus of the membranes. For membranes with the same H3PO4 content, the incorporation of POSS-IL increased the conductivities of the membranes by about two orders of magnitude. The highest conductivity was achieved by ABPBI/10 wt% POSS-IL composite membrane, which was 7.6×10-2 S/cm at 200 °C

    Mutational Analysis of Highly Conserved Residues in the Phage PhiC31 Integrase Reveals Key Amino Acids Necessary for the DNA Recombination

    Get PDF
    Background: Amino acid sequence alignment of phage phiC31 integrase with the serine recombinases family revealed highly conserved regions outside the catalytic domain. Until now, no system mutational or biochemical studies have been carried out to assess the roles of these conserved residues in the recombinaton of phiC31 integrase. Methodology/Principal Findings: To determine the functional roles of these conserved residues, a series of conserved residues were targeted by site-directed mutagenesis. Out of the 17 mutants, 11 mutants showed impaired or no recombination ability, as analyzed by recombination assay both in vivo and in vitro. Results of DNA binding activity assays showed that mutants (R18A, I141A, L143A,E153A, I432A and V571A) exhibited a great decrease in DNA binding affinity, and mutants (G182A/F183A, C374A, C376A/G377A, Y393A and V566A) had completely lost their ability to bind to the specific target DNA attB as compared with wild-type protein. Further analysis of mutants (R18A, I141A, L143A and E153A) synapse and cleavage showed that these mutants were blocked in recombination at the stage of strand cleavage. Conclusions/Significance: This data reveals that some of the highly conserved residues both in the N-terminus and C-terminus region of phiC31 integrase, play vital roles in the substrate binding and cleavage. The cysteine-rich motif and th

    A single dose of lipopolysaccharide elicits autofluorescence in the mouse brain

    Get PDF
    One hallmark of aging is autofluorescence (AF) in the brain. However, the underlying mechanism for inducing AF remains unknown. This study aims to determine the cause(s) of this phenomenon. The endogenous expression pattern of AF in mice was examined at differing ages. Intraperitoneal injection of a single dose of lipopolysaccharide (LPS) was performed to induce AF. Copper sulfate was applied to remove AF to allow for further immunofluorescence staining. AF appeared in the mouse brain as early as 3 months of age. In the cortex, AF occurs in the lysosomes of microglia, astrocytes, endothelial cells, and oligodendrocyte lineage cells and its prevalence increases with age. Interestingly, AF never occurs in the pericytes of young or aged brains. LPS administration resulted in a rapid and marked induction of brain AF, similar to the normal aging process. Finally, age-related and induced AF can be eliminated by low concentrations of copper sulfate solution. This pre-treatment is safe for aging and lineage tracing studies. These findings depict that AF in the brain could be associated with the innate immune response against Gram-negative bacteria infection

    Novel octopus shaped organic-inorganic composite membranes for PEMFCs

    Get PDF
    © 2016 Hydrogen Energy Publications LLC.Phosphoric acid doped polybenzimidazoles are among the most interesting proton exchange membrane materials for high temperature proton exchange membrane fuel cell applications. As a major challenge the proton conducting decline due to free phosphoric acid leaching during the long term fuel cell operation is addressed by fixing overmuch phosphoric acid in the polymer matrix. Novel organic-inorganic composite membranes are prepared via in situ synthesis of poly(2,5-benzimidazole) (ABPBI) and OctaAmmonium POSS (AM-POSS) hybrid composites (ABPBI/AM-POSS) following phosphoric acid doping and membrane casting procedures. Compared with the pristine ABPBI membrane, the introduction of AM-POSS into ABPBI polymer membrane caused water and phosphoric acid absorbilities increasing dramatically, resulting in the significant increase of proton conductivities at whether hydrous or anhydrous condition. ABPBI/3AM composite membranes with phosphoric acid uptake above 250% showed best proton conductivities from room temperature to 160 °C, indicating these composite membranes could be excellent candidates as a polymer electrolyte membrane for low and intermediate temperature applications

    SphK1/S1P Mediates PDGF-Induced Pulmonary Arterial Smooth Muscle Cell Proliferation via miR-21/BMPRII/Id1 Signaling Pathway

    Get PDF
    Background/Aims: The underlying molecular mechanisms involved in sphingosine kinase 1 (SphK1)/sphingosine 1-phosphate (S1P) mediation of platelet-derived growth factor (PDGF)-induced pulmonary arterial smooth muscle cell (PASMC) proliferation are still unclear, and the present study aims to address this issue. Methods: Small interfering RNA (siRNA) and microRNA inhibitor transfection was performed to block the expression of SphK1, bone morphogenetic protein receptor II (BMPRII) and microRNA-21 (miR-21). Gene expression levels of SphK1, BMPRII and inhibitor of DNA binding 1 (Id1) were detected by immunoblotting, miR-21 expression level was examined with qRT-PCR, and S1P production was measured by ELISA. Additionally, PASMC proliferation was determined by BrdU incorporation assay. Results: Our results indicated that PDGF increased the expression of SphK1 protein and S1P production, up-regulated miR-21 expression, reduced BMPRII and Id1 expression, and promoted PASMCs proliferation. Pre-silencing of SphK1 with siRNA reversed PDGF-induced S1P production, miR-21 up-regulation, BMPRII and Id1 down-regulation, as well as PASMC proliferation. Pre-inhibition of miR-21 also blocked BMPRII and Id1 down-regulation as well as PASMC proliferation caused by PDGF. Knockdown of BMPRII down-regulated Id1 expression in PASMCs. We further found that inhibition of PI3K/Akt and ERK signaling pathways, particularly ERK cascade, suppressed PDGF-induced above changes. Conclusion: Our study indicates that SphK1/S1P pathway plays an important role in PDGF-induced PASMC proliferation via miR-21/BMPRII/Id1 axis and targeting against SphK1/S1P axis might be a novel strategy in the prevention and treatment of pulmonary arterial hypertension (PAH)

    Poly(2, 5-benzimidazole)-based polymer electrolyte membranes for high-temperature fuel cell applications

    Get PDF
    The synthesis and characterizations of novel organic-inorganic composite membrane materials formed by poly(2, 5-benzimidazole)/OctaAmmonium POSS® (ABPBI/OA-POSS) are reported. An uniform dispersion of nanoparticles in the membrane with excellent mechanical properties was obtained from ABPBI containing 3% OA-POSS membranes (ABPBI/3OA). Upon impregnation with phosphoric acid, the composite membranes presented higher phosphoric acid uptakes and proton conductivities than that of the pristine ABPBI membranes. The highest proton conductivity of 0.25S/cm was achieved from ABPBI/3OA membrane with 241% of phosphoric acid uptake at 160d̀C without humidification. These properties make them very good candidates as the membranes for polymer electrolyte membrane fuel cells (PEMFCs) at temperatures up to 160d̀C

    Starch Granules in Arabidopsis thaliana Mesophyll and Guard Cells Show Similar Morphology but Differences in Size and Number

    No full text
    Transitory starch granules result from complex carbon turnover and display specific situations during starch synthesis and degradation. The fundamental mechanisms that specify starch granule characteristics, such as granule size, morphology, and the number per chloroplast, are largely unknown. However, transitory starch is found in the various cells of the leaves of Arabidopsis thaliana, but comparative analyses are lacking. Here, we adopted a fast method of laser confocal scanning microscopy to analyze the starch granules in a series of Arabidopsis mutants with altered starch metabolism. This allowed us to separately analyze the starch particles in the mesophyll and in guard cells. In all mutants, the guard cells were always found to contain more but smaller plastidial starch granules than mesophyll cells. The morphological properties of the starch granules, however, were indiscernible or identical in both types of leaf cells

    Priming the Secure Attachment Schema Affects the Emotional Face Processing Bias in Attachment Anxiety: An fMRI Research

    No full text
    Our study explored how priming with a secure base schema affects the processing of emotional facial stimuli in individuals with attachment anxiety. We enrolled 42 undergraduate students between 18 and 27 years of age, and divided them into two groups: attachment anxiety and attachment secure. All participants were primed under two conditions, the secure priming using references to the partner, and neutral priming using neutral references. We performed repeated attachment security priming combined with a dual-task paradigm and functional magnetic resonance imaging. Participants’ reaction times in terms of responding to the facial stimuli were also measured. Attachment security priming can facilitate an individual’s processing of positive emotional faces; for instance, the presentation of the partner’s name was associated with stronger activities in a wide range of brain regions and faster reaction times for positive facial expressions in the subjects. The current finding of higher activity in the left-hemisphere regions for secure priming rather than neutral priming is consistent with the prediction that attachment security priming triggers the spread of the activation of a positive emotional state. However, the difference in brain activity during processing of both, positive and negative emotional facial stimuli between the two priming conditions appeared in the attachment anxiety group alone. This study indicates that the effect of attachment secure priming on the processing of emotional facial stimuli could be mediated by chronic attachment anxiety. In addition, it highlights the association between higher-order processes of the attachment system (secure attachment schema priming) and early-stage information processing system (attention), given the increased attention toward the effects of secure base schema on the processing of emotion- and attachment-related information among the insecure population. Thus, the following study has applications in providing directions for clinical treatment of mood disorders in attachment anxiety
    • …
    corecore