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ABSTRACT 
Polymer electrolyte membrane fuel cells (PEMFCs) are one of the most promising 

clean technologies under development. However, the main obstacles for 

commercialising PEMFCs are largely attributed to the technical limitations and cost 

of current PEM materials such as Nafion. Novel poly(2,5-benzimidazole) 

(ABPBI)/POSS based polymer composite electrolyte membranes with excellent 

mechanical and conductivity properties were developed in this project including (I) 

ABPBI, polybenzimidazole (PBI) and their copolymers were synthesised by solution 

polymerisation and their chemical structures were confirmed by FTIR and elemental 

analysis. ABPBI/ActaAmmonium POSS (ABPBI/AM) and ABPBI/TriSilanolPhenyl 

POSS (ABPBI/SO) composites were also synthesised in situ. High quality polymer 

and composite membranes were fabricated by a direct cast method; and (II) The 

mechanical and thermal properties, microstructure and morphology, water and 

H3PO4 absorbility and proton conductivity of phosphoric acid doped and undoped 

ABPBI and ABPBI/POSS composite membranes were investigated. SEM/TEM 

micrographs showed that a uniform dispersion of POSS nano particles in ABPBI 

polymer matrix was achieved. The best performances on both mechanical properties 

and proton conductivities were obtained from the ABPBI/AM composite membrane 

with 3 wt% of POSS (ABPBI/3AM). It was found that both the water and H3PO4 

uptakes were increased significantly with the addition of POSS due to formation of 

hydrogen bonds between the POSS and H2O/H3PO4, which played a critical role in 

the improvement of the conductivity of the composite membranes at temperatures 

over 100oC. ABPBI/3AM membranes with H3PO4 uptake above 117% showed best 

proton conductivities at both hydrous and anhydrous conditions from room 

temperature to 160oC, which is comparable with the conductivity of commercial 

Nafion 117 at 20oC in water-saturated condition, indicating that these composite 

membranes could be excellent candidates as a polymer electrolyte membrane for 

high temperature applications. A new mechanism for illustrating the improved proton 

conductivity of composite membranes was also developed. 

Key words: PEMFC, polymer electrolyte membrane, poly(2,5-benzimidazole), 

ABPBI, TriSilanolPhenyl POSS, OctaAmmonium POSS, synthesis in-situ, direct 

casting, phosphoric acid doping, proton conductivity.  
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Chapter 1 INTRODUCTION 

1.1 Background 

As the natural resource depletion is accelerated, new energy sources are needed more 

urgently. The conventional and renewable energy industries are currently 

experiencing dramatic changes, especially in the last few years because of the price 

fluctuations of fossil energy sources.1 It is a consensus that the future global energy 

supply can only be secured by increasing the share of renewable energy. 

Development of the fuel cell (FC) technology has obtained huge support and interest 

around the world in the past decade due to its huge market potential, positive impact 

on air quality and radically different nature, which makes it better than currently 

available power sources, and is considered one of the promising substitutes for new 

energy supply. Based on the latest fuel cell industry analysis report, the fuel cell 

market had a high growth in the global cumulative shipments at a compound annual 

growth rate of around 49% during 2005-2008 and will grow by over 75% during 

2010-2012.2 

 

There are several different kinds of fuel cells in terms of the operation temperature, 

electrolytes and conducting ions transferring through the electrolytes, including 

polymer electrolyte membrane fuel cell (PEMFC), alkaline fuel cell (AFC), 

phosphoric acid fuel cell (PAFC), molten carbonate fuel cell (MCFC) and solid oxide 

fuel cell (SOFC) etc.3 Among these fuel cells, the PEMFC is highlighted because of 

its broad potential applications for portable electrical devices, automobiles and 

residential use.4 

 

A basic single PEMFC consists of a proton conducting membrane, sandwiched 

between two catalyst impregnated porous electrodes. The combination of membrane 

and electrodes, called the membrane electrode assembly (MEA), is the core 

component of a PEMFC. Meanwhile, the membrane is also regarded as the core 

component for a MEA.5 The current well-developed PEMFC technology is based on 

the perfluorosulfonic acid (PFSA) polymer membrane (e.g., Nafion® produced by 

DuPont Company) as the electrolyte.6 However, the operational temperature for this 
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kind of polymer membrane is limited to below 100oC at atmospheric pressure as the 

conductivity is dependent on the presence of water6-8. The current research on 

PEMFC is focused on the optimisation of a device working at operational 

temperatures above 100oC and at very low humidity levels. Such operative 

conditions offer the advantages, including an enhanced catalyst stability towards the 

fuel impurities, a faster electrode kinetic and, crucially a simplified water 

management design, which is particularly important in the case of stationary 

applications.9  

 

To improve the operating temperature to above 100°C, modified PFSA membranes, 

alternative sulphonated polymers and their composite membranes, and acid-based 

complex membranes are under investigation. Acid-doped polybenzimidazoles (PBIs, 

including polybenzimidazole and its derivatives) are particularly appealing as 

electrolyte membranes because of their high proton conductivities with no or low 

humidification and promising fuel cells performances.10 In addition, phosphoric acid 

doped PBIs are the only type of polymer membranes which can work up to 200°C so 

far.11 Due to containing alkaline functional groups (i.e. NH groups in benzimidazole 

rings) which can easily interact with strong acids, such as H3PO4 and H2SO4, 

poly[2,2’-(m-phenylene)-5,5’-bibenzimidazole], generically referred to as 

polybenzimidazole (PBI), allows proton migration along the anionic chains via 

Grotthuss mechanism12-14. In particular, PBI has been widely investigated including 

synthetic approaches and casting processes15, membrane thermal stability16, 

methanol crossover17, acid doping procedure, proton transport14, 18-20, and fuel cells 

performances17, 21-25. High-temperature, PBI-based membrane electrolyte assemblies 

(MEAs) for PEMFC were commercially developed by the Celanese Ventures GmbH, 

Germany.26 However, the under developing PBI membranes are still far from the 

PEMFC applications. Therefore, more researches of PBI polymer electrolyte 

membranes have been focusing on alternative acid impregnation, inorganic fillers 

composites, cross-linked blends etc.11, 27 

 

Since the productivity of a PBI based polymer membrane is mainly supported by the 

proton migration along the anionic chains, and the anionic groups can easily be 

attached or grafted to the imidazole rings via N-H bonds, therefore it is a useful 

approach to enhance the productivity by increasing the numbers of imidazole groups 
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in the PBI based polymer membrane. Poly(2,5-benzimidazole) (ABPBI) is another 

benzimidazole polymer having better thermal and conductance properties than that of 

PBI as it has more rigid backbones and higher percentages of imidazole rings in the 

backbones.28-30 Additionally, ABPBI can be synthesised from commercially 

available, cheap, single monomer, which could reduce the cost of synthesise of 

ABPBI and make ABPBI one of the most suitable polymers for PEMFC. 

1.2 Motivation and Objectives 

To date, most of the energy that we use is converted via heat engines, which causes a 

significant waste of energy due to their low efficiency, and massive pollution, such 

as carbon dioxide, nitrogen and sulfur oxides etc. Driven by reducing greenhouse gas 

emissions, any technology with potentially improved energy efficiency to meet these 

aims should be developed and investigated. 

 

As a sustainable, efficient and environmentally friendly energy converter, a fuel cell 

has a broad range of applications, such as for portable and mobile applications, 

stationary use etc; particularly, as an alternative to internal combustion engines in the 

transport section. Therefore, the development of fuel cell technology is of paramount 

importance in public and private life. 

 

As mentioned before, one of the main challenges in PEMFCs is to develop the 

polymer electrolyte membrane (PEM) used at high temperatures with low 

humidification for improving the efficiencies which is also the main objective of this 

project including understanding the scientific research through the investigation of 

the development of PEMFC, exploring new methods and/or materials to produce 

higher operational temperature membranes and measuring their various properties. 

The details of the objectives are as follow: 

 

 to synthesise ABPBI with adequate molecular weights for pristine and 

modified membranes fabrication; 

 

 to synthesise in situ and characterise ABPBI/polyhedral oligomeric 

silsesquioxane (POSS) composite membranes; 
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 to understand the proton conducting mechanisms of phosphoric acid, water 

and POSS on the proton conductivity of phosphoric acid doped ABPBI and 

ABPBI/POSS composite membranes; 

1.3 Outline of Thesis 
After the short introduction to this project, a more detailed introduction of fuel cells 

is included in Chapter 2. In Chapter 2, the specific topics include the background 

knowledge of fuel cell technology especially PEMFCs and a review of the 

development of PEM. As the main purpose of this project is to develop a PEM for 

high temperature applications, the fundamental theory of proton conducting and the 

approaches of achieving high temperature PEM materials are discussed in 

considerable detail.  

 

Chapter 3 lists the main chemicals used in the project, providing the details of 

synthesis of polymers, membrane fabrication techniques and characterisation. 

 

The results and discussion of the synthesis and characterisation of polymers are 

presented in Chapter 4. The synthesised polymers include ABPBI, copolymers of 

ABPBI and PBI, two different types of POSS respectively embedded ABPBI 

composites. The characterisation of these polymers includes their chemical structures, 

morphologies and thermal stabilities. Additionally, the evaluation of the reaction 

conditions of ABPBI synthesis is illustrated. 

 

The fabrication and properties of membranes are described in Chapter 5. Effects of 

fabricating processes on the morphology of membranes and the relationship between 

the chemical structure and property of the membrane are discussed.  

 

Chapter 6 presents the results and discussion of proton conductivity for ABPBI and 

ABPBI/POSS composite membranes. For a better understanding of the conductivity 

measurement, a brief introduction of the background and theory of impedance 

spectroscopy is reviewed followed by the details of conductivity measurement 

apparatus. 
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Finally, the conclusions are summarised in Chapter 6. The contribution and 

limitations of this work are also discussed followed by the suggestions with regards 

to the further work. 
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2.1 A Brief Introduction of Fuel Cells 

As a promising alternative power source, fuel cells have the potential to play a 

significant role as they displays several advantages in future energy resources, 

including low emissions, high efficiency, low noise and simplicity and so on.3, 31 

 

a. Low emissions 

Fuel cells can produce electrical and thermal power with lower emissions of 

greenhouse gases compared to more conventional power systems. Zero emission can 

be achieved if hydrogen is used as the fuel and produced from a renewable energy 

source.  

 

b. High efficiency 

The highest efficiency that a heat engine can achieve is subject to the Carnot Cycle. 

In the Carnot cycle, a thermodynamic cycle occurs when a system is taken through a 

series of different states, and finally returned to its initial state. In the process of 

going through this cycle, the system may perform work on its surroundings, thereby 

acting as a heat engine. In an ICE, the engine accepts heat from a source at a high 

temperature (T1, K), converts part of the energy into mechanical work and rejects the 

remainder to a low temperature (T2, K). The maximum efficiency (η, %) can be 

expressed as: 

1

21

T
TT −

=η                                      2-1 

Therefore, the greater efficiency can be achieved in an ICE when the temperature 

difference is greater. However, increasing temperature difference adds immense 

costs and inconvenience. As one of the main competitors of fuel cells, the internal 

combustion engine (ICE) is still only capable of converting less than 20% of the 

energy from the fuel though after continuous development in 20th century.31 A fuel 

cell is not constrained by the maximum Carnot cycle efficiency as the combustion 

engine is, because it relies on an electrochemical reaction instead of a thermal cycle. 

In other words, it is just like an electrochemical energy conversion device which 
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converts the chemical energy directly into electrical energy. Consequently, this 

engine converter can have very high efficiency. Theoretically, a fuel cell can achieve 

an energy efficiency of 85 to 90% if the rejected heat is harnessed.31 Current energy 

conversion efficiency for a power generation is about 30% depending on the fuel and 

process used, and fuel cell energy efficiency is currently 40% to 55% for electrical 

power generation, and potentially up to 70% for a fuel cell/gas turbine hybrid 

system.31 

 

c. Low noise and simplicity 

The essentials of fuel cells are very simple. Unlike an ICE, fuel cells run very quietly 

owing to no moving parts and minimisation of noise and vibration levels caused by 

auxiliary equipments, therefore, fuel cells are highly reliable and long-lasting.32 

 

Besides these benefits mentioned above, to consider the full advantages of a 

hydrogen economy-sustainability and increased energy security, fuel cells are seen as 

one of the future key enabling technologies for high efficiency, integrated electrical 

power and heat generation.31 

2.1.1 Brief history of fuel cells development 

In 1838 a German-Swiss scientist Christian Friedrich Schönbein discovered the 

principle of fuel cells. The following year, based on his work, William Grove33 

invented the first fuel cell. He inserted platinised electrodes into two bottles filled 

with hydrogen and oxygen respectively. After adding diluted sulfuric acid solution, 

he noticed a small current flow between the two electrodes. Following on from that, 

Ludwig Mond and Dr. Charles Langer33 developed fuel cells by using a thin porous 

diaphragm soaked with electrolyte and two porous electrodes containing perforated 

platinum or gold leaf as a current collector. In terms of the structure, it was very 

close to a modern fuel cell. However, because of the rapid development and wide 

application of heat engines at that time, the research and development on fuel cells 

stagnated for many years.  

 

At the end of 1950s, Pratt and Whitney34 developed an Alkaline Fuel Cell (AFC) 

system employed by U.S. Apollo space program. Subsequently, in 1962 a Polymer 

Electrolyte Membrane Fuel Cell (PEMFC) invented by the General Electric company 
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was deployed in the U.S. Gemini program.34 The successful application of fuel cells 

in the space program again brought this technology to public attention. 

 

Since 1990, the research and development of fuel cells has met a boom period due to 

the increasingly serious global energy crisis. In this century, because of another issue 

of global warming and waste gas emission, fuel cells are exciting the minds of not 

only theoretical scientists and practical technologists, but also most governments. It 

is believed that fuel cells will soon become a major competitor and eventually 

replace conventional energy devices. 

2.1.2 Classification of fuel cells 

Table 2-1 Type of fuel cells 

Fuel 
Cell 

Electrolyte 
/Catalyst 

Operat. Temp./ 
Electric Power Electrochemical Reaction 

PEMFC Polymer membrane/ 
Pt 

80oC/ 
 Up to 250kW 

Anode (A):  +− +→ HeH 442 2

Cathode (C):  OHHeO 22 244 →++ +−

AFC Liquid KOH 
(immobilized)/ Pt 

200oC /  
Up to 20kW 

A:  −− +→+ eOHOHH 4442 22

C:  −− →++ OHOHeO 424 22

PAFC Liquid H3PO4 
(immobilized)/ Pt 

200 oC / 
>200kW 

A:  +− +→ HeH 442 2

C:  OHHeO 22 244 →++ +−

MCFC Molten carbonate/ 
Nickel 

650 oC / 
>1MW 

A:  −− ++→+ eCOOHCOH 42222 22
2
32

C:  −− →++ 2
322 242 COeCOO

SOFC Ceramic/ Ceramic 1000 oC / 
>50kW 

A:  −− +→+ eCOOHOCOH 4)(22)(2 22
2

2

C:  −− →+ 2
2 24 OeO

Note: PEMFC-Polymer electrolyte membrane fuel cell; PAFC-Phosphoric acid fuel cell; 
AFC-Alkaline fuel cell; MCFC-Molten carbonate fuel cell; SOFC-Solid oxide fuel cell 
 

Fuel cell systems can be classified according to the working temperature: very high 

(over 1000ºC), high (500-1000ºC), intermediate (100-500ºC) and low (25-100ºC) 

temperature systems, or referring to the (atmospheric) pressure of operation: high, 

medium and low pressure system. They may be further distinguished by the fuels 

and/or the oxidants used: gaseous reactants (such as hydrogen, ammonia, air and 

oxygen), liquid fuels or solid fuels. For practical reasons fuel cell systems are simply 

distinguished by the type of electrolyte used (Table 2-1). The electrolyte can be solid 

polymer, liquid acid, ceramic, or molten ionic salt.31 
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Alkaline fuel cell (AFC) 
The Alkaline Fuel Cell (AFC) was the first modern fuel cell developed intensively at 

the beginning in 1960. In an AFC, the electrolyte is concentrated KOH whilst 

hydroxyl ions are the conducting species transferring in the electrolyte.  

 
There are two main advantages for the AFC35. Both anode and cathode reactions 

allow the application of non-precious metal nickel or its alloys as electro-catalysts, 

thus the cost can be relatively low. Furthermore, compared to other types of fuel cell, 

the AFC exhibits relatively high efficiency of up to 70%, which is mainly due to the 

rapid kinetics of oxygen reduction in the alkaline environment. 

 

However, the AFC’s performance is greatly affected by CO2 from reformed fuels at 

the anode and air at the cathode. On the one hand, the reaction between CO2 and OH- 

causes a reduced OH- concentration; on the other hand, KOH is gradually diluted by 

water which is generated during operation, both leading to a reduced conductivity of 

the electrolyte. As a result, water must be ejected immediately and CO2 must be 

eliminated at both electrodes. However, to solve these problems would bring to the 

complexity of the fuel cell structure and increasing cost, thereby these defects limit 

the AFC’s wide applications. 

Phosphoric acid fuel cell (PAFC) 
 
The PAFC was the first commercialised fuel cell technology owing to its stability, 

low volatility, and tolerability to CO.3 The PAFC is working in a similar way to a 

PEMFC, i.e. the concentrated H3PO4 is used as a proton-conducting electrolyte and 

the electrochemical reactions take place on highly dispersed electro-catalysts 

particles (i.e. Pt) supported on carbon black. 

 

Although phosphoric acid electrode/electrolyte technology has now reached a level 

of commercialisation, to further improve carbon monoxide and sulphur tolerance, the 

research into catalysts is still focusing on evaluating Pt alloy, transition metal organic 

macrocycles etc. as cathode electro-catalysts. However, these technologies are still 

too expensive compared with alternative power generation systems, therefore, 

increasing the power density of the cells whilst reducing costs are still the key 

issues3. 
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Molten carbonate fuel cell (MCFC) 
Similar to a PAFC, a MCFC also use a liquid electrolyte which is immobilised in a 

porous matrix. The electrolyte of a MCFC is a molten mixture of alkali metal 

carbonates. It operates at a relatively high temperature (typically 600-700°C) where 

the alkali carbonates form a highly conductive molten salt, with carbonate ions 

(CO3
2-) providing ionic conductivity. From the reactions (in Table 2-1), carbon 

dioxide acts as a reactant at the cathode and product at the anode. To make the cell 

work more efficiently, the CO2 generated from the anode is usually recycled to the 

cathode where it is consumed. Due to the high working temperature, non precious 

nickel and nickel oxide are used as the catalysts to promote the anode and cathode 

reactions. However, the MCFC operating temperature poses a great challenge to the 

stability and life of the cell components.3 

Solid oxide fuel cell (SOFC) 
In a SOFC, an oxide ion-conducting ceramic material (i.e. zirconia) is used as the 

electrolyte and the device is completely solid-state device3. Similar to the MCFC, in 

the SOFC a negatively charged ion (O2-) is transferred from the cathode through the 

electrolyte to the anode. Hydrogen or carbon monoxide can be used as a fuel. 

 

In terms of principle and structure, the SOFC is an ideal choice with some distinct 

advantages over other types of fuel cell.31 Because of no containing the liquid 

electrolyte, it can operate without worrying about electrolyte loss and material 

corrosion. Furthermore, non-precious metal electro-catalysts (such as Zr, Ni and Sr 

and so on) are used due to their high working temperature. However, successful 

candidates for electrolyte must be able to conduct O2- which requires high operating 

temperatures and, while running at that high temperature, relative components must 

be thermally stable with closely matched thermal expansion coefficients which are 

the same as MCFC.3 

Polymer electrolyte membrane fuel cell (PEMFC) 
The polymer electrolyte membrane fuel cell (PEMFC), also known as proton 

exchange membrane fuel cell, was first developed for use by NASA in 1960s, and is 

now being developed for applications of transport as well as stationary and portable 

power. More details are given in following sections. 
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2.2 Introduction of PEMFC 

A PEMFC uses a polymer membrane as the electrolyte. Therefore, it is also called 

the polymer membrane fuel cell (PMFC) or the solid polymer fuel cell (SPFC). A 

basic single PEMFC consists of a proton conducting membrane sandwiched between 

two catalyst (usually platinum or its alloys) impregnated porous electrodes (Figure 

2-1a)3. This combination of membrane and electrodes is the core component of a 

PEMFC, called the membrane electrode assembly (MEA) (Figure 2-1b). Generally, 

an electrolyte attached to either side of the electrolyte physically separates the two 

reactants, and also prevents electronic conduction, while allowing ions to pass 

through; the electrons travel through an external loop to supply the load. The 

diffusion layers (Figure 2-1.a) provide a path for oxidant, electrons and fuel diffusion 

to the catalyst layers where the electrochemical reactions occur. At the anode, the 

fuel (i.e. H2 shown in Figure 2-1a and b) crosses the diffusion layer and produces 

protons and electrons at the catalyst layer. Protons then transfer through the 

membrane, while electrons go through the external circuit. Both finally reach the 

catalyst layer at the cathode to participate in the cathode reaction with oxygen. 

 

Hydrogen was the initial option to be used as a fuel. Since then, several other fuels 

have been developed in the PEMFC. With different fuels, a PEMFC can be classified 

into hydrogen-PEMFC (H2-PEMFC), direct methanol fuel cell (DMFC), formic acid 

fuel cell (FAFC) and so on. 

 

 
a. Overall fuel cell                    b. Cross-section of PEM 

Figure 2-1 Scheme of a PEMFC3 
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2.2.1 Hydrogen PEMFC 

As shown in the scheme of a PEMFC in Figure 2-1 and electrochemical reactions in 

Table 2-1, with hydrogen feeding at the anode, the hydrogen is oxidized. Electrons 

pass through the load to provide the desired current and end up at the cathode, where 

the matching reduction reaction occurs. Electrostatic balance is reached as the 

hydrogen ions diffuse through the electrolyte to get to the cathode. Therefore, with 

fuel continuously supplied, electricity is produced. 

 

This technology has drawn the most attention because of its simplicity, viability, 

quick start-up, and it has been demonstrated in almost any conceivable application. 

After nearly half a century of development, this device has reached the test and 

demonstration phase36. An application of PEMFC as a primary power source in 

electric vehicles has received increasing attention in the last decade. Current 

commercial PEMFC, operating in the temperature range from 25°C to 80°C, can 

achieve power densities in the range of 0.35-0.7W/cm2 in hydrogen-air systems at 

pressure levels between ambient pressure and 2.5 bar, which has brought the power 

density at stack level above the 1kW/l target that was set for automotive 

applications.37 

 

Hydrogen is the most widely used fuel for fuel cells for various reasons: 

 

a) Rich resource 

The usage of fossil fuels (i.e. coal, oil and natural gas) has lasted over 200 years. It is 

believed that the fossil fuel can support human activities for less than 100 years.38  

 

Fortunately, hydrogen is the most abundant element in the universe and can be easily 

produced from water and hydrocarbon compounds. A hydrogen-based energy system 

is regarded as a viable and advantageous option for delivering high-quality energy 

services in a wide range of applications in an efficient, clean and safe manner while 

meeting sustainability goals37, 39. In 2004, the worldwide hydrogen production was 

about 40 billion standard cubic feet per day, which is equivalent to about 75,000 MW 

of electrical power38. Barreto40 also indicates that the aggregate share of fuel cells in 

global transportation market will be over 50% in the year 2050 and will rise to 71% 
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at the end of the 21st century. Hydrogen will account for a quarter of global final 

energies consumption in 2050 and half in 2100. 

 

b) Cleanness 

Unlike fossil fuels, the final emission of hydrogen PEMFC is only water, without any 

greenhouse gas or nitric oxides, sulphur oxides etc. 

 

c) Large energy density 

The energy density of fuel is defined as the amount of energy stored in a given 

amount of fuel: 

 

MGkgMJdensityEnergy ∆−=/,                        2-2 
 
where ∆G represents the change in molar Gibbs free energy of formation at standard 

condition (298K, 1atm), and M is the molecular weight of the fuel. 

 

Compared with other fuels, hydrogen has the highest energy density (Table 2-2).  

 
Table 2-2 Energy density comparison for several kinds of fuels 

Fuel Energy density, MJ/kg 
Hydrogen 113.68 

Natural gas 49.9 
Gasoline 47.5 
Propane 47.0 
Ethanol 28.3 

Methanol 21.5 
Formic acid 5.9 

Note: All the data of Gibbs free energy are taken from Yaws41, the energy density of gasoline is 
from Caldirola42. 
 

However, the wide application of hydrogen is technically limited by its generation, 

transportation and storage.43 

 

i. Hydrogen generation 

Hydrogen is the clean energy only if all the moves (i.e. production and transportation) 

cause minimal environmental impact. Hydrogen in the free form is unavailable in 
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nature and the generation of hydrogen from fossil fuels in order to attain the same 

amount of energy is obviously not good for the environment, therefore, hydrogen 

generation from renewable energy has become a popular research area. Currently, 

hydrogen is mostly produced from fossil fuels in industry, and only 5% of hydrogen 

is produced from renewable sources.44 

 

ii. Hydrogen transportation 

Currently, the infrastructures for hydrogen transportation are needed desperately and 

using the paved pipelines designed for natural gas has been proposed. However, the 

volumetric energy density of hydrogen is only one third of that of natural gas, which 

means that, in order to obtain the same amount of energy, hydrogen has to be 

transported at a much higher rate, thus leading to more significant pumping losses43. 

Also new fittings, pipe specifications, and more powerful compressors are required 

for hydrogen carrying43. In other words, a completely new distribution system for 

hydrogen transportation may be needed. 

 

iii. Hydrogen storage 

It’s a big challenge to store hydrogen as a liquid like other liquid hydrocarbons. The 

liquefaction of hydrogen is also expensive and inefficient.43 However, progress has 

been made in the use of metal hydrides, and carbon-based hydrogen storage 

materials. 

2.2.2 Direct Methanol Fuel Cells (DMFC) 

The operation of a DMFC is very similar to that of a H2-PEMFC, apart from the use 

of methanol as fuel and the production of carbon dioxide at the anode. In a DMFC, 

the hydrogen ions travel through the electrolyte and react with oxygen from the air 

and the electrons from the external circuit to form water at the anode completing the 

circuit. Although the gravimetric energy density of methanol is average (Table 2-2), 

it is the most electro-active organic fuel for fuel cells.45 

 

Compared to a PEMFC relying on on-board reforming of hydrocarbons as its 

hydrogen source, a DMFC uses methanol directly as its fuel, without complex 

reforming components, thus the fuel cell system is significantly simplified. Unlike 

the usage of hydrogen suffers from storage and transportation, a DMFC does not 
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bear these drawbacks. Methanol is liquid at room temperature, thus it is much safer 

and more convenient to transport and store than gaseous hydrogen. In addition, 

methanol can be readily produced via manufacturing processes from plentiful raw 

materials such as coal and methane46. The DMFC can work at higher efficiency than 

conventional energy devices so that the emission of carbon dioxide can be effectively 

reduced. Moreover, no sulphur oxide, nitrous oxide or other pollutants are produced, 

thus DMFC is still environmentally acceptable. 

 

However, a DMFC still suffers from two main drawbacks: lower efficiency and 

lower power density than H2 PEMFC, due to the slower electrochemical methanol 

oxidation and methanol permeation through the polymer membrane.47 The reaction 

rate of methanol oxidation at the anode is at least 3 to 4 orders of magnitude lower 

(even with high Platinum loading) than the electro-oxidation of hydrogen with a low 

Pt catalyst48. When using methanol as a fuel, part of methanol tends to permeate 

through the electrolyte membrane, which is known as methanol crossover. The 

diffusion driven by a methanol concentration gradient and electro-osmosis are 

mainly responsible for the methanol crossover. However, methanol diffusion occurs 

all the time in a DMFC as long as a concentration gradient is present, whilst 

electro-osmosis only takes place when current is being drawn, and the rate varies 

with membrane materials, e.g. the electro-osmotic drag coefficient (the number of 

water molecules taken by each proton whilst it is moving) of the Nafion polymer 

membrane is 2~3 at room temperature, but polybenzimidazole has an electro-osmotic 

drag coefficient near zero49. Methanol crossover has several disadvantageous effects 

on the cell performance3: 

 

 Reducing the fuel efficiency. The methanol which crosses over produces no 

electrical energy, and is therefore essentially wasted. 

 

 Resulting in a ‘mixed potential’. When methanol gets to the cathode, 

undesirable methanol oxidation may occur. This competes with oxygen 

reduction for catalytic sites, resulting in a ‘mixed potential’. This adverse effect 

leads to a lower open circuit voltage than the thermodynamic value. 
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 Increasing the mass transport over potential. To facilitate the cathode 

reaction, oxygen needs to readily diffuse to the catalyst layer, but crossed-over 

methanol consumes oxygen at the catalyst, thereby increasing the mass 

transport over potential. 

2.2.3 Other fuels for PEMFC 

Besides methanol and hydrogen, formic acid50-52, ethanol53, 54 and hydrazine55 etc., 

can also be employed as fuels for using in PEMFC. 

 

Formic acid features a high theoretical open circuit potential (1.45 V) and is widely 

available in nature. Differing from proton transferred via sulphonic acid ions (e.g. 

Nafion®) or phosphoric acid (e.g. PBI membranes) in many membranes, in a formic 

acid (FAFC), formic acid partially dissociates into formate anions (HCOO-) which 

transfer proton50. Although the utilization of high concentrations of formic acid 

enhances the anode electrochemical kinetics, facilitates fuel cell design and raises the 

energy density of FAFC devices, the anode oxidation kinetics is still slow and 

current research is focused on the development of a more efficient anode catalyst. 

 

An ethanol fuel cell has some advantages such as low toxicity and abundant 

availability in nature, but also suffers the fuel crossover problem similar to a DMFC.. 

Compared to methanol, ethanol has lower permeation rates probably due to its larger 

molecular size53. In addition, the ethanol permeation exhibited a less serious effect 

on the cell performance at the cathode compared to methanol due to its slower 

electrochemical oxidation kinetics on the Pt/C cathode54. However, the biggest 

disadvantage of ethanol fuel cells still comes from the slow ethanol oxidation at the 

anode. 

 

Yamada et al55 explored the hydrazine (N2H4) as the fuel for PEMFC. Although the 

theoretical open circuit voltage for hydrazine is high (1.56 V), the performance of the 

hydrazine fuel cell is compromised by fuel crossover problems and permeation of 

by-product NH3 decomposed from hydrazine through the membrane. 
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2.2.4 Advantages and disadvantages of PEMFCs 

Based on the brief description of different types of fuel cells in the above sections, 

the relative merits of PEMFC can be summarised. Usually, the advantages31 of 

PEMFC against other fuel cells include: 

 No free corrosive liquid in the cell; 

 Simplified fabrication of the cell; 

 Ability to withstand large pressure differentials; 

 Minimal material corrosion problems; 

 Long-life in operation etc. 

 

However, the disadvantages31, 56 of PEMFC exist in: 

 

 Traditionally expensive fluorinated polymer electrolyte membrane (e.g. 

Nafion®) and high cost cells; 

 Poor carbon monoxide (CO) tolerance of PFSA-based polymer membranes; 

 Intricate water management and dehydration of polymer membranes when high 

humidification is needed; 

 Difficulties in using reformate gases (such as methanol); 

 Relative low energy efficiency owing to operating in low temperature etc. 

2.3 Development of Polymer Electrolyte Membranes 

Traditional electrolyte systems such as sulphuric acid and potassium hydroxide, used 

for their low cost and high ionic conductivity but saddled with their extreme 

corrosivity and challenging sealability, are giving way to new polymeric electrolyte 

systems. As early as in the 1940s scientists began to develop organic ion exchange 

resins which also were known as ionomers. Due to the interaction occurred between 

polymer and ions, these ionomeric polymers have many different properties 

compared to conventional polymers and are typically used as thermoplastics, fuel 

cell membranes, ion exchange membranes etc.57 

 

As mentioned before, the first practical proton exchange membrane fuel cell 

developed by General Electric in the United States in the 1960s was used in manned 

space vehicles. This polystyrene sulphonate ion exchange membrane had a life time 
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of only 500h because of suffering from insufficient electrochemical stability under 

fuel cell operation conditions58.  

 

The development of fluorocarbon based typically perfluorinated ionomers is 

regarded as one of the most important breakthroughs in the fields of ionomeric 

membranes. The state-of-the-art polymer electrolyte membrane fuel cell (PEMFC) 

technology is based on perfluorosulphonic acid (PFSA) polymer.59, 60 A lifetime of 

over 60,000h under fuel cell conditions has been achieved with commercial Nafion 

membranes.6 

 

However, the major shortcomings of PFSA polymer membranes include low 

operating temperature (typically 80°C) and extremely high cost.56, 61 It is worthy to 

mention that most of the shortcomings related to the low temperature PEMFC 

technology based on PFSA polymer membranes can be solved or avoided by 

exploring alternative materials for operating at higher temperatures. Therefore, high 

temperature polymer electrolyte membranes, such as modified PFSA membranes, 

alternative polymers (e.g. sulphonated polyetheretherketone and sulphonated PBI etc.) 

and their composite membranes, and acid-based complex membranes (e.g. 

phosphoric acid doped PBI) for operation above 100°C are under active 

development.  

 

To better understand the development of polymer electrolyte membranes, first of all, 

it is important to understand the mechanism of ion (or proton) transfer in or between 

these ionomeric polymers. The concise introduction of well developed PFSA 

membranes and the motivations for the purpose of high temperature PEMFC 

applications are also necessary to be reviewed. 

2.3.1 Mechanism of proton conducting in PEM 

Proton conductivity is a key process in the production of electricity in a hydrogen 

fuel cell. The proton conducting phenomena have been studied extensively from 

different points of view by many scientists. Amongst of them, Grotthuss initially 

presented ‘hopping’ mechanism12 in 1806, then Kreuer et al. presented ‘vehicle’ 

mechanism62 in 1982. Although the transfer of protons in solid electrolyte polymer is 

widely studied and the precise mechanism is not completely known yet, the 
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‘hopping’ mechanism and ‘vehicle’ mechanism have been mostly accepted because 

they can well explain the proton conductivity phenomena in currently widely 

developed PEMFC. 

 

The proton has no electron shell of its own therefore strongly interacts with the 

electron density of its environment. In non-metallic compounds, it strongly interacts 

with the valence electron density of its nearest neighbours. If this is a single oxygen, 

this results in the formation of an O-H bond which is less than 100pm in length 

compared to about 140pm for the ionic radius of the oxide ion. For the distance of 

oxygen with ~280pm, the proton may be involved in two bonds, i.e. a short and 

strong bond with the so-called proton donor and a longer but weak bond with a 

proton acceptor, which is the asymmetrical hydrogen bond (O-H···O).63 Water is 

thought as the best solvent for protons and exhibits unusually high equivalent 

conductivity of protons. The proton transfers through hydrogen-bonded network of 

water molecules, which is so-called ‘Grotthuss mechanism’12, 13, or ‘hopping 

mechanism’ or ‘structure diffusion’. 

 

In the ‘hopping’ mechanism, two steps are involved, i.e. polarisation of the hydrogen 

bond or the proton intermolecular transfer and the depolarisation or reorientation of 

water dipole (in Figure 2-2).13 The current is realised through the protons fluctuating 

between proton donors and acceptors. This mechanism comprises features typical for 

both the solid and liquid state therefore is widely employed to explain the proton 

conductivity in a PEMFC at hydrous and/or anhydrous conditions. 

 

Oxygen
Hydrogen

 
Figure 2-2  Proton transfer according to Grotthuss mechanism 
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Based on the ‘hopping’ mechanism, the free proton is regarded as having a 

momentary existence. However, in the late 1960s, Fischer et al.64 suggested that the 

proton may remain shielded by some electron density along the entire diffusion path 

to explain the some phenomena of proton diffusivity. Obviously, in that case, the 

momentary existence of a free proton is not required. Kreuer et al. further proposed 

‘vehicle’ mechanism which is also called molecular diffusion.9, 13, 62, 63, 65  

 

The proton transfer via ‘vehicle’ mechanism in a hydrous Nafion membrane is 

illustrated in Figure 2-3. The proton loaded on a H2O molecule (as a ‘vehicle’ form 

H3O+) migrates through the channel and is unloaded to another H2O molecule, whilst, 

the unloaded ‘vehicle’ (H2O) move in the opposite direction. Gradually, the proton is 

transferred from the anode to the cathode. Obviously, unlike the ‘hopping’ 

mechanism, a hydrogen bond is not necessary for proton transport within this model 

and the proton does not migrate as H+ but as H3O+. 

 

Backbone chain of Nafion

SO

H  O

H  O

3

3

2

 
Figure 2-3  Proton transfer according to Vehicle mechanism 
 

Generally, the ‘hopping’ mechanism can well explain the proton transfers in the 

anhydrous oxo-acids systems (i.e. H3PO4
66), whilst the ‘vehicle’ mechanism is 

prevalent in concentrated aqueous systems (i.e. Nafion). In some cases, Kreuer found 

that, these two mechanisms could work together as a mixed mechanism67 and the 

dominated one can be either the ‘hopping’ mechanism or the ‘vehicle’ mechanism 

based on the various temperature and concentration of the system. To further 

distinguish the pivotal role between these two mechanisms, Kreuer proposed a 

method by measuring the relevant rates of the proton transfer and proton diffusion. 

For a example, if the rate of proton transfer is much larger than the rate of proton 

diffusion, which indicates the proton transfer rate successfully dominates over the 

vehicle diffusion, in other words, the character of conduction mechanism change 

from the ‘vehicle’ mode to ‘hopping’ mode.68 
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2.3.2 Perfluorinated ionomer membranes 

2.3.2.1 The structure and properties of perfluorosulphonic (PFSA) polymer 

membranes 

As mentioned before, the well-developed PEMFC technology is based on PFSA 

materials as PEMs. It is a common view that the future optimal membrane materials 

will not be a PFSA polymer. However, the PFSA based PEMFCs have become the 

standard against those membrane material candidates. To take in this sense, it is still 

necessary to know the properties of PFSA based membranes. 

 
Table 2-3 Structure of PFSA polymer and typical properties of commercial PFSA membranes 

( CF2       CF2 )x

SO3H

CF3

O
              

( CF2       CF )y

(O       CF2       CF )m ( CF2 )n

 
Structure 
parameter 

Trade name 
and types 

Equivalent weight 
(IEC, mequiv.g-1) 

Thickness 
(µm) 

 
m=1;x=5-13.5; 
n=2;y=1 

DuPont Co. 
  Nafion® 120 
  Nafion® 117 
  Nafion® 115 
  Nafion® 112 

 
  1200(0.83) 
  1100(0.91) 
  1100(0.91) 
  1100(0.91) 

 
  260 
  175 
  125 
  80 

 
m=0,1;n=1-5 

Asahi Glass Co. 
  Flemion®-T  
  Flemion®-S 
  Flemion®-R 

 
  1000(1.00) 
  1000(1.00) 
  1000(1.00) 

 
  120 
  80 
  50 

 
m=0;n=2-5;X=1.5-14 

Asahi Chemicals
  Aciplex®-S 

   
1000-1200(0.83-1.00) 

   
25-100 

 
m=0;n=2;X=3.6-10 

Dow Co. 
  Dow® 
Solvay 
  Hyflon®-Ion 

   
  800(1.25) 
 
  900(1.11) 

   
  125 

 

As one of typical fluorocarbon based ionomers, the PFSA polymer is composed of 

carbon-fluorine backbone chains with perfluoro side chains containing sulphonic 

acid groups at its end (in Table 2-3). The polytetrafluoroethylene (PTFE)-like 

molecular backbone provides PFSA polymer with excellent long-term stability in 

both oxidative and reductive environments whilst the sulphonic acid groups cause the 

21 



Chapter 2 LITERATURE SURVEY 

sulphonate polymer to swell in various organic solvents and be suspended for further 

formations of membranes or MEAs. Since DuPont Company commercialised the 

polymer membrane based on PFSA with the trade name of Nafion in 1968, Nafion 

has become the industry standard PEM and widely used in almost all current PEMFC 

development.6 Other companies such as Dow, Asahi and Solvay, have also 

developed their membranes based on similar PFSA structures. Some typical 

commercial PFSA membranes and their structures are listed in Table 2-3.56, 69 

 

Basically, to determine a qualified PEM when fuel cell system tests are absent, ion 

exchange capacity (or equivalent weight), water content and proton conductivity are 

regarded as the key parameters. 

 
Table 2-4 Main properties of Nafion® membranes 

Property Typical Value 

Physical Properties 
Tensile modulus, MPa 

           50% RH, 23°C 
           Water soaked, 23°C 

 
(ASTM D 882) 

249 
114 

    Tensile strength, MPa 
           50% RH, 23°C 
           Water soaked, 23°C 

(ASTM D 882) 
43 a
34 a

Elongation at break, % 
           50% RH, 23°C 
           Water soaked, 100°C 

(ASTM D 882) 
225 
200 

Density, g/cm3 1.98 
Hydrolytic Properties  

Water content, %water 
Water uptake, %water 
Thickness change, %increase 

from 50%RH to water soaked, 23°C 
Linear expansion, %increase 

from 50%RH to water soaked, 23°C 

5 (ASTM D570) 
38 b (ASTM D570) 

 
10 (ASTM D 756) 

 
10 (ASTM D 756) 

Conductivity, S.cm-1

    Measurement cell submersed in 25°C D.I. 
water during experiment 

 
8.3×10-2

Note: a, measured in machine direction; b, water uptake from dry membrane soaked in water at 100°C 
for 1 hour. 
 

The ion-exchange capacity (IEC) is defined as the moles of exchangeable acidic 

protons per gram of dry polymer. Another common term used to describe the ionic 

content is the equivalent weight (EW) which is the inverse of IEC. Obviously, the 
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higher the value of IEC leads to higher proton conductivity. The water content in a 

membrane is represented by the water uptake (calculated by weighing the membrane 

under both hydrated and dry conditions) or the number of water molecules per acid 

unit, also referred to as the hydration number (λ) (calculated from water uptake and 

IEC). Via the hopping or vehicle mechanism, the water molecules always act as the 

very important proton carriers, resulting in higher conductivity if the higher water 

content existed in the membrane. The proton conductivity of a membrane is 

particularly important since it plays a significant role in the performance of the 

PEMFC. Higher levels of proton conductivity result in higher power densities. 

Although there are many other properties of PEMs that have important correlations 

to fuel cell performance (thermal stability, methanol crossover, electro-osmotic drag, 

etc.), the parameters of IEC, water uptake and proton conductivity are essential when 

it comes to evaluating membranes as the candidates for PEMFCs70. The main 

properties of Nafion membranes are given in Table 2-4.71 

2.3.2.2 Proton transfer routes in PFSA polymer membranes 

Water is always essential for the proton transfer in a PFSA based membrane. Kreuer9 

provided a classical explanation about the proton transfer routes in the case of Nafion 

membrane (in Figure 2-4). 

 

 
Figure 2-4  Microstructure of Nafion9  
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The structure of Nafion involves the extremely high hydrophobicity of the PTFE-like 

polymer backbone with the extremely high hydrophilicity of grafted sulphonic acid 

functional end groups, which results in a hydrophilic/hydrophobic nano-separation 

especially in the presence of water. The hydrophilic domains which are formed by 

the aggregation of sulfonic acid groups spontaneously absorb water and then swell to 

form nano-channels. These nano-channels are well connected each other and 

responsible for water and protons transporting. In the nano-channels, charge carriers 

are formed by dissociation of the hydrated acidic functional groups whilst protons 

transfer through the hydrophilic channels via ‘hopping’ and/or ‘vehicle’ forms. 

Additionally, the hydrophobic domains provide the polymer membrane with 

morphological stability and prevent its dissolution in water. 

2.3.2.3 Limitations of PFSA polymer membranes 

Compared to these currently developing electrolytes, Nafion membrane performed 

some unique characteristics. For example, compared with H3PO4, the catalytic 

activity of carbon-supported noble metal catalysts for oxygen reduction is high in the 

PFSA electrolyte, owing to the non-absorbing nature of sulphonic acid anions on the 

Pt catalyst surface. Solubility of H2
72 and O2

73 are also found to be 20-30 times 

higher than that in H3PO4. As a result of the fast electrode reaction kinetics, the 

performance of Nafion based PEMFC is high, especially at low noble metal 

loading.56 

 

Although great success has been made with the PFSA membranes, some fatal or 

inherent shortcomings hindered their widely commercialised applications. The main 

disadvantages of the Nafion membrane include: 

 

1. Limited operational temperature; 

Since the high proton conductivity of hydrated polymers relies on the presence of 

water in the hydrophilic domains as described above, the presence of water limits the 

operational temperature below 100oC under ambient atmosphere pressure, typically 

around 80oC. At 100% relative humidity (RH) the conductivity of Nafion is generally 

between 1.0×10-2 and 1.0×10-1 S.cm-1 and drops by several orders of magnitude as 

the humidity is decreased.74 
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2. High cost; 

Nafion membrane cost amounting to more than 100US$ per kW makes its 

applications in cost critical situations such as fuel cells for electrical vehicles 

unlikely.56 

 

3. Low CO tolerance; 

The currently limited operation temperature leads to a low CO tolerance of the 

electrocatalyst.75 

 

4. High crossover rate of methanol. 

In the DMFC, when methanol is directly used as fuel, Nafion membrane suffers from 

a high crossover rate of methanol.76 

2.3.3 Reasons for developing high temperature polymer electrolyte 
membranes 

The term high temperature for a PEMFC refers to a temperature range from 

100~200oC relative to the currently well-developed PFSA based PEMFC technology 

typically operating under 100oC. It is widely considered that, these shortcomings 

associated with the low temperature PEMFC technology based on PFSA membranes 

mentioned above, can be overcome by exploring alternative membranes operational 

at higher temperatures (i.e. >100oC). The advantages from the PEMFC operating at 

high temperatures have been broadly reviewed in some literatures56, 74, 77, 78. 

Generally, the driving forces of developing alternative membranes operational at 

higher temperatures are involved in benefits from electrode reactions, lifetime of 

catalyst, fuel feeding, structural design and overall system energy efficiency which 

are summarised as follows. 

2.3.3.1 Enhancing kinetics of electrodes reactions 

The Tafel equation is normally used to represent the performance of a PEMFC in the 

kinetically controlled regime:78 

 

ibibEE rev loglog 0 −+=                       2-3 

where E, Erev, b, i and i0 are the electrode potential, reversible potential, Tafel slope, 

current density and exchange current density, respectively. 
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Tafel slope b can be calculated by 

 

nF
RTb

α
×−= .32                              2-4 

 
where α is the electron transfer coefficient and n the number of transferred electrons. 

 

Electrode potential (E) is the electromotive force of driving the electrodes reaction in 

a cell. The smaller the value E of is, the easier the electrodes reactions occur. From 

the Tafel equation, E is determined by Erev, b, and i0. Theoretically, Tafel slope b 

varies linearly with temperature (equation 2-4) when assuming the electrochemical 

reaction mechanism is independent of the temperature. i0 is also found to increase 

with temperature78. The variation of Erev with temperature is discussed as follows. 

 

Erev is related to temperature according to equation below: 

 

( 298−⎟
⎠
⎞

⎜
⎝
⎛ ∆

+= T
nF

SEE
p

o
revrev )                     2-5 

 
where ∆S, n and p is the entropy, the transferred electron number and partial pressure 

for H2/O2 reactions respectively, F is the Faraday constant. 

 
When the electrochemical reaction of H2/O2 occurs under 100oC, the gaseous 

reactants (H2 and O2) transfer into the liquid product (H2O), thus the entropy (∆S) for 

the H2/O2 reaction is negative. Therefore, Erev decreases with increasing temperature 

under 100oC. However, this effect is less judged above 100oC because the product 

H2O becomes gaseous. 

 

In the electrochemical reaction, the term thermodynamic open circuit voltage (OCV) 

is another factor for determining the workability of electrochemical reactions. The 

OCV decreases with increasing temperature, especially above 100oC resulting from 

the increase of partial pressure of the gaseous product H2O, which is confirmed by 

Xu et al.79 

 

26 



Chapter 2 LITERATURE SURVEY 

To sum up, the kinetics for both electrode reactions is enhanced with the operational 

temperature increasing. Additionally, in a DMFC, because the methanol oxidation 

rate is at least three to four orders of magnitude lower then hydrogen oxidation48 and 

the overall kinetics is determined by the relatively slow oxidation reaction, thus, the 

enhanced kinetic with increasing temperature is especially important for the direct 

oxidation of methanol in DMFC. 

2.3.3.2 Increasing CO tolerance 

As discussed before, the pure hydrogen is not yet a viable option due to lack of 

availability and impractical storage technique, though PEMFC generally performs 

best by using pure hydrogen. On-site generation of hydrogen by steam reforming of 

various organic fuels is the obvious choice, but these reformed gases contain carbon 

monoxide. It was found that, however, at the conventional PEMFC operating 

temperature of 80oC, a CO content as low as 10-20ppm in the fuel feed results in a 

significant loss in cell performance due to CO poisoning of the electrode catalyst.80 

Figure 2-5 shows the mechanism of CO poisoning Pt electrode catalyst.22  

 

H2 + Pt Pt           Pt Pt           Pt Pt + 2H+ + 2e-

  H  H

CO + Pt Pt

Pt + H2O          Pt + H+ + e-

(a) Oxidation of Hydrogen

OH

Pt

C

O

Pt Pt        

CO + Pt

C

O

(b) Dissociation of Water

line-bonded

bridge-bonded

OH

Pt

OH

Pt

Pt Pt + CO2 + H+ + e-

Pt Pt Pt  + CO2 + H+ + e-

(c) Oxidation of carbon monoxide

Dissociative
chemisorption

Electrochemical
oxidation

Absorption Desorption

 
Figure 2-5  Reactions happened on the anodic platinum catalyst 
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As shown in Figure 2-5a, oxidation of H2 on Pt takes place in two steps, i.e. 

dissociative chemisorption and electrochemical oxidation. The former step requires 

two free adjacent sites of Pt surface atoms and the latter produces two free Pt sites 

instead.  

 

When CO is contained in H2 fuel, it competes with H2 for the adsorption sites of Pt 

with two types of bonding models (line-bonded and bridge-bonded shown in Figure 

2-5c). With the attendance of O atoms from the dissociation of water (Figure 2-5b), it 

will be easy to desorb CO from the site of Pt via CO to CO2. However, the 

rate-determining step for sequences of CO adsorption and desorption is the formation 

of the oxygen-containing adsorbate, or the dissociation of water. Additionally, the 

desorption of the adsorbed CO occurs at around 0.5V vs. RHE (reversible hydrogen 

electrode) of an anode potential whilst the anode potential is under 0.1V vs. RHE 

under operational conditions in a PEMFC. In other words, CO is an inert adsorbate 

on the Pt surface, resulting in the dramatically reduction of the Pt activity. 

 

The considerable efforts have been made to reduce the effect of CO, including 

feeding oxidant into the fuel, further purifying the fuel and exploring CO-tolerant 

electro-catalyst etc. However, these lead to other drawbacks such as high cost and 

safety issues. 

 

It is well know that, however, the adsorption of CO on Pt is strongly favoured at low 

temperature and disfavoured at higher temperature81, 82. Therefore, it is valuable to 

improve CO tolerance by increasing operational temperatures. Compared with the 

CO tolerance of 10-20ppm at 80°C, Pt based catalysts can tolerate up to 1,000ppm at 

130 °C and up to 30,000ppm at 200 °C56. Obviously, such a high CO tolerance 

makes it possible to use the simply reformed H2 fuel. 

2.3.3.3 Improving water management and gas diffusion 

In most cases, the proton conductivity of a membrane is dependent on its level of 

hydration and the performance of a PEMFC is greatly affected by the operational 

environmental humidity. Figure 2-6 gives a basic view of the water balance in a 

PEMFC: i) the anodic oxidation consumes water at the anode; ii) the cathodic 

reduction produces water which may diffuse back to the anode; iii) the protons 
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associated with water molecules (electro-osmotic drags) transport from the anode to 

the cathode; iv) water at the cathode may evaporate into the air; v) water may be 

delivered if the supplied air is humidified and, vi) the supplied fuel contains water 

that may diffuse into the anode.3 

 

i)   Water consumption at the anode;
ii)  Water generation at the cathode;
iii) Electroosmotic transport through
     the membrane;
iv) Evaporation at the cathode;
v)  Diffusion from humidified air;
vi) Diffusion from aqueous fuel.

Anode CathodeElectrolyte
i

ii

iii

v
ivvi

 
Figure 2-6 A diagram of different water movements in a PEMFC 
 

It is well known that the proton conductivity significantly decreases with a lack of 

water in the membranes and gas diffusion electrodes in a PEMFC below 100oC. 

However, the excessive water in the cathode causes ‘flooding’, which also leading to 

restrict oxygen transport through the porous gas diffusion electrode.78 These 

problems can be relieved by operating a PEMFC above 100oC because at that 

condition, only a single phase of gaseous water exists, therefore the water 

management system can be largely simplified. 

 

The performance of a PEMFC is also greatly affected by gas diffusion. Basically, the 

more or rapider the gas (e.g. H2 and O2) is transported to participate the 

electrochemical reaction at the anode and cathode, the higher the current density can 

be achieved. Gas diffusion through a MEA is characterised by the gas diffusion 

coefficient. Generally, with the operational temperature increasing the gas diffusion 

coefficient increases whereas the gas solubility decreases, for example, the gas 

diffusion coefficient of O2 through water vapour is several orders of magnitude 

larger than through liquid water. Therefore, high operational temperature facilitates 

gas transporting through the MEA and should lead to an increased PEMFC 

performance in the mass transport controlled regime.78 

2.3.3.4 Increasing overall system energy efficiency 

Due to the thermodynamically irreversible reaction, changes in entropy and Joule 

heating, nearly half of the energy produced in a PEMFC operated at 80oC has to be 
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dissipated through the cooling system.56 Obviously, it is very inefficient for a 

PEMFC operating below 100oC. 

When a PEMFC operates above 100oC, the heat rejection is much easier because the 

temperature in a fuel cell system is great different from the ambient environment, 

leading to the simplified cooling system and the increased power density of the fuel 

cell system. In addition, the waste heat produced at higher temperature can also be 

recovered and in turn used either for direct heating, steam reforming, or pressurised 

operation. Thus, the overall system efficiency is significantly increased under higher 

temperature operating conditions.78 

2.3.3.5 Other benefits of high temperature operation 

Besides the benefits listed above, there are other advantages78 of high operational 

temperature as follows. 

  

1) Because of little or even no liquid water presented in the fuel cell above 100oC, 

the flow field which is to provide a uniform reactant distribution over electrode 

surface area can be simplified and flow fields may be simplified without having to 

consider two-phase flow. 

 

2) The high operational temperature i.e. 100-200°C can provide the heat for H2 

desorption at the anode which is favourable for developing the higher hydrogen 

storage materials. 

 

3) High operational temperature is also very important for a direct methanol fuel cell. 

As we know, one of the main technical challenges for the direct use of methanol as 

fuel is the insufficient activity of anodic catalyst which leads to a high anodic 

over-potential loss. The insufficient activity of the anode catalyst results from the 

slow kinetics of the methanol oxidation and the strong poisoning effect of the 

intermediate species (CO) from methanol oxidation. Both negative effects could be 

lightened by increasing the operational temperature of DMFC. Additionally, when 

DMFC operates at 200oC, the temperature close to that of methanol reforming, will 

allow for an integration of the fuel cell with a high-capacity hydrogen storage tank or 

a methanol reformer. The integration is expected to give the overall power system 
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advanced features including higher efficiency, smaller size, lighter weight, simple 

construction and operation, and power capital and operational cost.83  

2.4 Approaches for High Temperature PEM 

The essential requirements for operational high temperature polymer membrane 

electrolyte materials of PEMFC include56:  

 

 High proton conductivity;  

 Good chemical stability and thermal stability; 

 Good mechanical properties (strength, flexibility, and processability); 

 Low gas permeability and low water drag; 

 Fast kinetics for electrode reactions; 

 Low cost and commercial availability. 

 

In order to meet the requirements of the high operating temperature (above 100°C), 

modified PFSA membranes, alternative sulphonated polymer and their composite 

membranes, and acid-based complex membranes are under investigation. 

2.4.1 Modifications of PFSA polymer membranes 

Since the conductivity of PFSA membrane will decrease at the temperature 

approaching 100oC because of the water loss, many research studies have been 

carried out to modify the PFSA membranes for operating at high-temperature with 

low humidification. Generally, the routes for modifying the PFSA membranes 

include56:  

 

1) Replacing water by swelling the membranes with nonaqueous and low volatile 

solvent to replace water. The difficulties for those PFSA membranes swollen in these 

media may arise from the immobilisation of liquids especially in the presence of 

water, and adsorption of the solvent on the catalyst surface. 

 

2) Exploring thin and reinforced PFSA membranes. Although the thickness has been 

successfully reduced down to 5~30µm with good conducting, one of the challenges is 

to maintain the good mechanical strength under swelling and high temperatures. 
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3) Composites with single-functional particles (as the water absorber) and 

bi-functional particles (both as the water absorber and proton conductor) to enhance 

water absorbility and/or proton conductivity.  

 

Table 2-5 summarised the efforts as well as other modifications of PFSA-based 

membranes.56 However, they are constrained by PFSA polymer’s glass transition 

temperature (160oC for a completely dry sample and 99oC for a fully hydrated 

sample77).  

 
Table 2-5  Summary of modifications of Nafion membranes 

Modifiers Remarks 

H3PO4 5.0×10-2 S.cm-1 at 150°C 

PTA-acetic acid H2/O2, 110°C, 660mA.cm-2 at 0.6V,  1/1atm, humidifier 50/50°C 

PTA-TBAC H2/O2, 120°C, 700mA.cm-2 at 0.6V,  1/1atm, humidifier 50/50°C 

SiO2 >2.0×10-1 S.cm-1, 100°C, 100%RH 

SiO2 DMFC, 145°C, 4.5/5.5 atm(air), 350mA.cm-2 at 0.5V 

SiO2/siloxane H2/O2, 130°C, 3/3atm 

Teflon + PTA H2/O2, 120°C, 400mA.cm-2 at 0.6V,  1/1atm, humidifier 90/84°C 

ZrP DMFC, 150°C, 4/4atm, 350mW.cm-2 (O2), 260mW.cm-2 (air) 

ZrP H2/O2, 130°C, 1.5A.cm-2 at 0.45V,  3atm 

di-isopropyl phosphate 4.0×10-2 S.cm-1 at 25°C 

SiP-PMoA/PTA 5.0×10-3 S.cm-1 at 23°C, fully hydrated 

SiWA( + thiophene) Fuel cell test at 80°C 

SiO2,PTA-SiO2, 

SiWA-SiO2
DMFC, 140°C, 3/4atm, 400mW.cm-2 (O2), 250mW.cm-2 (air) 

PMoA+SiO2 >3.0×10-1 S.cm-1, 90°C 
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2.4.2 Alternative sulphonated polymer membranes 

Development of sulphonated polymer membranes as alternatives to PFSA is 

principally motivated by reducing the material cost for low-temperature operation. 

Sulphonation can be performed mainly in three ways: 1) Direct sulphonation in 

concentrated sulfuric acid,; 2) Chemically grafting a group containing a sulphonic 

acid onto a polymer or by graft copolymerisation using high energy radiation 

followed by sulphonation of the aromatic component; and 3) Synthesis from 

monomers bearing sulphonic acid groups. 

 

Since the high chemical and thermal stabilities are the basic requirements for a PEM 

material at high operating temperature, two main groups of polymers, inorganic 

elements (i.e. F, Si etc.) contained polymers and aromatic polymers with phenylene 

backbones, respectively, have been widely investigated for these purposes.  

 

Some of these materials show interesting features for a possibility of operating at 

high temperatures. More efforts are also undertaken to develop organic-inorganic 

composites based on these alternative polymers in order to achieve high operational 

temperatures. 

2.4.2.1. Proton transfer routes in sulphonated polymer membranes 
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Figure 2-7 Proton conducting in a sulphonated polymer membrane at high temperature and low 
humidity via 1, acid to acid; 2, H2O to acid 
 

In a sulphonated PEM operated at a high temperature with low humidity, it was 

found that the conductivity of the membranes depends directly on the concentration 

of acid groups and the strength of the acids77. There are two main routes for proton 
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migration (in Figure 2-7). When the sulphonic groups are closely enough, the proton 

will transfer through O-O atoms in acid groups via the ‘hopping’ mechanism (route 1 

in Figure 2-7). Due to the hydrophilicity of sulphonic groups, there are water existed 

even at very low humidity. The water molecules are hydrogen-bonded with 

sulphonic groups to bridge ionic inclusions. Thus, the protons transfer through 

acid-water-acid via the ‘hopping’ mechanism or by the immigration of hydroniums 

via the ‘vehicle’ mechanism (route 2 in Figure 2-7).  

2.4.2.2. Fluoropolymers and silicone polymers 

The chemical bond strength of C-F is about 485 kJ.mol-1 and Si-O 445kJ.mol-1. Both 

of them are higher than that of C-H (350-435 kJ.mol-1) and C-C (350-410 kJ.mol-1). 

Therefore, these fluoropolymers and silicone polymers (e.g. polysiloxanes) (Figure 

2-8) provide high thermal and chemical stabilities. 
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Figure 2-8  Structures of fluoropolymers and silicone polymers for PEMs 
 

Fluoropolymers have been studied extensively for using as fuel cell membranes as 

the fluorine atoms can bring interesting properties69 including  

 

 Improvement of the thermal, chemical and oxidizing stabilities of the resulting 

(co)polymers and, to some extent, the mechanical properties; 
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 Enhancing the acid behaviour of a sulphonic acid function when a fluorinated 

group is adjacent to it, leading good protonic conductivities. 

 

Besides the perfluoropolymers such as PFSA polymers, partially fluorinated polymer 

membranes have also been studied for the preparation of PEM. Silicone polymers 

normally are synthesised by grafting functional organic groups (i.e. arylsulphonic 

anions or alkylsulphonic anions etc.) onto the inorganic Si-O backbones and further 

forming cross-linked network via hydrosilylation therefore exhibiting high thermal 

and chemical stabilities, optical transparency and proton conductivities for the 

PEMFC applications. These information can be traced in the reviews by Li et al.56 

and Souzy et al.69 

 

However, only the promising performance of these fluoropolymer and silicone 

polymer membranes as opposed to Nafion membranes can be achieved at low 

temperature fuel cell test, and no properties at high operational temperature were 

reported which might be due to the water loss at high temperature. 

2.4.2.3. Aromatic hydrocarbons as polymer electrolyte membranes 

The aromatic hydrocarbons appear as the outstanding candidates for using as PEM, 

mainly owing to their 

 

a) Good oxidation resistance due to C-H bonds strength in the benzene ring 

(~435kJ.mol-1) and excellent mechanical properties due to their benzene ring 

contained repeat units in backbones; 

 

b) Practicability of commercialisation;  

 

c) Low cost. 

 

They can be classified into three types by different repeat units in their backbones 

including, Type A: repeat unit only consisted of a benzene ring; Type B: repeat unit 

consisted of benzene ring(s) and other element(s) or group(s); and Type C: repeat 

unit consisted entirely of heteroaromatic ring(s) and/or benzene ring(s) (Figure 2-9). 
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Figure 2-9  Structures of aromatic hydrocarbons for PEMs 
 

Type A polymers exhibits the super resistance and extreme rigidity due to only the 

benzene ring in the repeat units of the backbones and meets the difficulty of 

processability. By introducing flexible and high thermo-stable ether groups into main 

chains of Type A polymers, the obtained Type B polymers have favourable 

processability with good thermal and chemical stabilities. Among of Type B 

polymers, sulphonated polysulphone (PSF) and polyetheretherketone (PEEK) were 

investigated extensively and Zhang et al.78 and Li et al.56 gave good reviews. In type 

C, the representative polymers are PBI and its derivatives, i.e. ABPBI, which will be 

discussed in the late section. 

 

For the purpose of high temperature (>100oC) operating PEM, the proton 

conductivities based on these aromatic hydrocarbon PEM are far from satisfaction to 
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be used at high temperatures with low humidity, mainly due to water loss at high 

temperature. Therefore, some hygroscopic materials were introduced to improve the 

water retention and/or second proton conducting species were embedded to improve 

the conductivity. These kinds of modifications will be discussed in the following 

inorganic-organic composites section. 

2.4.2.4. Inorganic-organic composites 

The advantages of inorganic-organic composites may include the following56: 

 

 Improvement of the water retaining ability. The finely dispersed hydrophilic 

inorganic particles can absorb water which is particularly important at the anode 

side since the water will carry proton and traverse the membrane from anode to 

cathode, resulting in the drying-out of the membrane at the anode side; 

 

 Reduction of the electro-osmotic drag. The larger sized inorganic particles can 

retard the migration of smaller sized hydroniums, leading to reducing the 

electro-osmotic drag; 

 

 Decrease of the fuel crossover. Obviously, the particles can hinder the 

permeation of the fuel since the sizes of inorganic particles are normally larger 

than that of fuel molecules; 

 

 Enhancement of the conductivity. The advantages mentioned above can improve 

proton conductivity of the membrane. Besides, the proton conductivity can also 

be enhanced by introducing other proton conductors, for example, when the 

inorganic fillers are also proton conductors; 

 

 Improving the mechanical and thermal properties. The homogeneously dispersed 

inorganic particles can reinforce the membrane and improve its thermostability; 

 

The proton transport in composite membranes is the result of a complex process 

dominated by the surface and chemical properties of the composites. There are two 

general approaches to increase the proton transport. One is to introduce a 

hygroscopic material (e.g. silica) into the polymer matrix. The hygroscopic 
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composite, on the one hand, effectively retains water in the membranes at lower 

relative humidity, on the other hand, hinder the fuel permeation. The migration of 

protons is mainly through the hydroniums from the hygroscopic fillers (in Figure 

2-10). 

 

 
Figure 2-10 Proton transport in polymer/nanoparticle composite membranes74 
 

Another is to add a second proton conductor (solid particles) into the polymer to 

enhance proton conductivity whilst reduce the methanol and water permeability of 

the membranes.84-86 Due to their larger sizes, the finely dispersed particles can be the 

hindrances for the unwanted species migration. The introduced conductive species 

(e.g. α-ZrP) is assumed to make up for conduction losses due to the reduced water 

within the membrane, in which the protons migrate through functional acid ions. 

Sulphonated hydrocarbon polymers were also used as a host matrix for preparation 

of inorganic-organic composites for high temperature PEMFC applications. 

Generally, high sulphonation of a membrane leads to high conductivity and also  

results in poor mechanical properties. Hence, the addition of inorganic materials into 

the polymers for both enhancing the proton conductivity and maintaining the 

mechanical properties is a very effective approach. 

 

A summary of inorganic-organic composites used as PEM above 100oC is given in 

Table 2-656. It can be seen that some of these inorganic-organic composite 

membranes exhibited a promising conductivity at the temperature above 100°C. 
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Table 2-6 Summary of inorganic-organic composites used as PEM under development 
Organic 

component 

Inorganic component Remarks 

  SPEK, SPEEK ZrP+(SiO2, TiO2, ZrO2) Reduced methanol crossover 87 

  SPEEK SiO2, ZrP, Zr-SPP 9.0×10-2 S.cm-1 at 100°C, 100%RH 88 

  SPEEK HPA 10-1 S.cm-1 above 100°C 89 

  SPEEK BPO4 5.0×10-1 S.cm-1, 160°C, fully hydrated 90 

  PBI ZrP+H3PO4 ; 

PWA/SiWA+H3PO4

9.0×10-2S.cm-1, 200°C, 5%RH  

3.0~4.0×10-2 S.cm-1, 200°C, 5%RH 91 

  PBI SiWA+SiO2 2.2×10-3 S.cm-1,160°C,100%RH 85 

  PBI PWA+SiO2+H3PO4 1.5×10-3 S.cm-1, 150°C,100%RH 84 

  PVDF CsHSO4 10-2 S.cm-1, >150°C, 80%RH 92 

  GPTS SiWA+; SiWA+ZrP 1.9×10-2 S.cm-1,100°C,100%RH 93 

  Polysilsesquioxanes PWA 3×10-2 S.cm-1, 140°C 94 

  PEO Tungsten acid 10-2 S.cm-1, 120°C 95 

  PEO, PPO, PTMO PWA 10-2 S.cm-1,140°C 96, 97 

2.4.3 Acid-based polymer electrolyte membranes 

Acid-based complexation is regarded as an effective approach of developing proton 

conducting membranes.98 The basic sites such as ether, alcohol, amine, or imide 

groups in a polymer can react with strong acids (typically sulfuric acid or phosphoric 

acid) to form ionic bonds. Once the acid is added, the complexation polymer acts 

both as a donor and an acceptor in proton transfer and therefore allows for the proton 

migration. 

 

H3PO4 and H2SO4 can be self-ionised and self-dehydrated thereby exhibit unique 

proton conductivity even in an anhydrous.99 When a basic polymer is present, the 

interaction between these acids and the polymer through hydrogen bonding or 

protonation would increase the acid dissociation, compared to that of anhydrous 

acids. Therefore, most acid-based PEMs have been prepared by combining sulfuric 

acid or phosphoric acid with basic polymers. 
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Sulphonation of hydrocarbon polymers, briefly reviewed above, is regarded as one of 

the main methods for the preparation of acid-based polymer membranes preparation 

including ionic cross-linking polymers. In addition, the ionic cross-linking polymer 

matrix can enhance the membrane mechanical stability. The flexible ionomer 

networks were prepared from acid-based polymers by ionic cross-linking of 

polymeric acids and polymeric bases. The acidic polymers used are sulphonated 

polysulphone (SPSF), sulphonated polyethersulphone (SPES), or sulphonated 

polyetheretherketone (SPEEK). Some basic polymers are commercially available, 

such as PBI, polyethyleneimine (PEI), and poly(4-vinylpyridine) (P4-VP) whilst new 

basic polymers by modifying the PSF backbones with NH2- or N(CH3)2- groups have 

also been reported. Combinations of these acidic and basic polymers such as 

SPEEK/PBI, SPEEK/P4VP, SPSF/PBI, SPEEK/PSF(NH2)2 and SPSF/P4VP have 

been explored. These information can be traced from the works by Ma100 and Li et 

al.56 

 

It is worth mentioning that high conductivity can be obtained at high acid contents, 

however, the mechanical properties will decrease greatly especially at high 

temperature. To enhance the membrane mechanical properties, besides the 

development of ionic cross-linking polymers, adding inorganic filler or/and 

plasticizer is another effective approach. When the higher acid content is added, the 

plasticisation effect of the excessive acid would lead to the formation of a soft paste, 

resulting in the difficulty of processability, so that the inorganic filler such as 

high-surface-area SiO2 was added into such as PEI101 and Nylon102 to reinforce the 

membrane materials. 

 

Besides the sulphonation of polymers, acid doping is another important method for 

preparing acid-based membranes. Of these, most investigations were focused on the 

phosphoric acid doped PBIs. Because of its outstanding properties, H3PO4-doped 

PBIs have received much attention in the past few years. As this project is mainly 

focusing on phosphoric acid doped ABPBI and its composite membranes, more 

details about the development of PBIs based PEMs are given in the next section. 
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2.5 Development of Polybenzimidazoles (PBIs) Based PEM 

Poly[(2,2’-(m-phenylene)-5,5’-bibenzimidazole] (polybenzimidazole, PBI) which is 

commercially available from Hoechst-Celanese primarily since 1960s, have 

applications as thermally stable textile fabrics, high temperature matrix resins, 

adhesives and foams, due to its excellent thermal and chemical stability and 

mechanical properties.103, 104 Owing to its all-aromatic structure (type C-1 in Figure 

2-9), PBI has a glass transition temperature of above 420°C and melting point of 

above 600oC.105 Pure PBI is an electronic and ionic insulator, which, however, can be 

a very good ionic conductor when it is modified by acids under proper conditions. In 

the form of a membrane, PBI has received much attention mainly for use in blood 

dialysis and reverse osmosis at high temperatures and in harsh environments.106  

 

PBI was primarily and deeply investigated as an electrolyte material by Litt, Savinell, 

Wainright, etc.16, 19, 21, 107-109 Compared with PFSA polymer membranes, acid-based 

PBI membranes possess the following advantages14, 103: 

 

1. Good proton conductivity at elevated temperature (up to 200oC);19, 107 

 

2. Almost zero electro-osmotic drag number for water and methanol108 compared 

to the drag number of 0.6-2.0 for the Nafion® membrane. This unique feature 

of the acid-doped PBI membrane allows the PBI fuel cell to be operated at 

elevated temperature and low gas humidity without membrane dehydration.  

 

3. Low methanol vapour permeability.110 

 

In addition, acid-doped PBI membranes have excellent oxidative and thermal 

stability16 and good mechanical flexibility at high temperature111, which makes it a 

promising candidate electrolyte for high temperature PEMFC. 

 

ABPBI is another benzimidazole polymer possessing comparable thermal and 

conducting properties as that of PBI.28, 30 It is particularly important that the ABPBI 

is synthesised from a commercially available, cheap, single monomer and hence will 
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be cheaper than PBI. It is believed that ABPBI is one of the best choices for applying 

in PEMFC. 

 

Beside phosphoric acid doping, other studies of PBIs based polymer electrolyte 

membranes have been focusing on impregnation with different acid or base, 

composites with inorganic particles, grafting functional groups onto PBI, copolymers 

included benzimidazole repeated unit, polymer blends etc.. In this section, the 

mechanisms of proton conduction, synthesis and modifications of PBIs, their 

membranes fabrication and their performances as polymer membranes will be mainly 

reviewed. 

2.5.1. Proton conducting routes in PBIs membranes 

As discussed in section 2.3.1, hopping and vehicle mechanisms are addressed to 

explain proton transfer through PEM, and, at some conditions, these two mechanisms 

work together and can also change from one to another model depending on various 

temperatures and concentrations of acid in the system. The proton transfer in acid 

doped PBI can be well explained by these mechanisms together. 

 

Since phosphoric acid doped PBI was proposed to be used as a PEM, the proton 

transfer routes have been investigated by different researchers. Through the 

characterisation of a solid-state nuclear magnetic resonance (SS-NMR), Wasmus et 

al.112 found that the phosphoric acid absorbed by the PBI membrane was relatively 

immobile compared to free phosphoric acid, indicating that there was an interaction 

between imidazole groups of PBI and phosphoric acid. Schechter et al.113 further 

found that the free or mobile acid shared some characteristics of liquid acid solution 

and the water activity influenced the concentration of this free acid by adsorption and 

release into the polymer matrix. By the measurement of IR spectroscopy, Glipa et 

al.114 thought that protons transferred from H3PO4 to the imino groups of PBI114, 

whilst Kawahara et al.115 thought that H3PO4 did not protonate the imidazole groups 

of PBI but interacted by hydrogen bonding between the OH and N groups. The 

presence of HPO4
2- and H2PO4

- anions implied that the proton conduction occurred 

according to the Grotthuss mechanism. Bouchet et al.20 suggested that the nitrogen of 

the imidazole was protonated by the acids and proton transfer from one imidazole 

site to another in which the anionic species participate through the Grotthuss 
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mechanism. Moreover, the anions were linked to the polymer by rather strong 

hydrogen bonding. Pu et al.116 proposed that proton transport in phosphoric acid 

blended PBI was the consequence of the two contributions: one was based on rapid 

proton exchange (hopping) via hydrogen bonds between solvent molecules, which 

could be the phosphate, N-heterocycles of PBI and water molecules; and the other 

was based on the self-diffusion of phosphate moieties and water molecules (vehicle 

mechanism). 
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Figure 2-11 Proton transport in H PO  doped PBI 3 4

 

Although the mechanisms of proton transfer in acid doped PBIs are still debatable, 

the main proton transfer routes in Figure 2-1114, 18 are widely accepted. Protons may 

transfer between benzimidazole (BI) and BI (Figure 2-11a), BI and phosphoric acid 

(Figure 2-11b), BI and water (Figure 2-11c), acid molecules (Figure 2-11d), and acid 

and water (Figure 2-11e). The dominated proton transfer routes will be various 

according to different conditions. Generally, at no acid and/or a very low acid doping 

level, the proton mainly transfer between polymer chains (i.e. BI and BI), resulting in 

a poor conductivity. With the acid doping level increasing, the proton transfer 

between polymer chains and phosphoric acid becomes significant, leading to rapid 

increase of conductivity. When the acid doping level is above the saturation level of 

polymer chain protonation, i.e., the acid acts a ‘solvent’ whilst the polymer chains 

like ‘solute’, the proton transfer is dominated by transporting through acid to acid, 

resulting in the crucial improvement of conductivity. If water exists, the more routes 

for proton transfer also lead to the increase of conductivity. 
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2.5.2 Synthesis of PBIs 

2.5.2.1 Synthesis of polybenzimidazole (PBI) 

PBIs were first synthesised by melt polycondensation of suitable aromatic 

terraamines and aromatic dicarboxylic acids (i.e. heating the 3,3’-diaminobenzidine 

and 1,2,4,5-tetraaminobenzne with diphenyl isophthalate in an inert atmosphere at 

high temperature) in 1961.117 This melt polycondensation proceeds by two 

consecutive nucleophilic reactions (a nucleophilic substitution to form an 

amine-amide followed by cyclization via nucleophilic addition) (Figure 2-12). The 

disadvantages of this melt polycondensation include: (i) oxidation sensitive since the 

trace of oxygen can oxidize the tetraamine impeding the production of the polymer; 

(ii) toxic by-product of the reaction-phenol; (iii) vacuum required for the 

polymerisation process. 

 

NH2

NH2 O

OH

O

O

OH
NH

NH2

N

N

N

N
H  
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Figure 2-13 Synthesis of PBI with stable salt of the tetraamine and derivates of isophthalic acid 
in polyphosphoric acid 
 

In order to avoid the above disadvantages, a more stable salt of the tetraamine and 

derivates of isophthalic acid in polyphosphoric acid (PPA) were used118, 119, which 
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acted as polycondensation agent and solvent (Figure 2-13). However, this synthesis 

process required a rather long reaction time (200°C for 12 hours). The polymer 

molecular weight was also extremely sensitive in this reaction condition. Thus low 

molecular weight molecules had to be eliminated for the purpose of achieving 

polymer with high molecular weights. 

 

Choe et al.120, 121 obtained high molecular weight PBI by using arylhalo phosphorus 

compound catalyst. However, these processes required quite harsh conditions such as 

temperatures as high as 480°C, and an absolutely inert reaction environment. Also 

phenol was generated as the by-product of the reaction when biphenyl isophthalate 

was used as the monomer. 

 

A new method to synthesise PBI was proposed by adding an amount of triphenyl 

phosphate as the catalyst(Figure 2-14.a)  and the molecular weights between 

115,000 and 190,000 were obtained.122 PBI and a series of polybenzimidazoles (PBIs) 

incorporating main chain pyridine groups were synthesised by using PPA as both 

solvent and polycondensation reagent.123, 124 In these synthesis processes, the typical 

reaction conditions are under 220°C for less than 24 hours at nitrogen atmosphere. 

Therefore, PBI can be easily synthesised in PPA medium at lab scale. Kim et al.125 

developed a new route by using a mixture of trifluoromethanesulphonic acid 

(CF3SO3H, TFA), methanesulphonic acid (CH3SO3H, MSA) and phosphorous 

pentoxide (P2O5) as reaction medium, and 3,3’-diaminobenzidine and isophthalic 

acid as monomers (Figure 2-14.b). In their work, PBI with suitable molecular weight 

were achieved by adjusting the ratio of TFA and MSA. 
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Figure 2-14 Synthesis of PBI in a. PPA/TPP and b. TFA/MSA/P2O5  
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2.5.2.2 Synthesis of poly(2,5-benzimidazole) ABPBI 

Similarly, ABPBI was synthesised both by melt polymerisation117 and in 

polyphosphoric acid medium119. ABPBI was also easily produced at laboratory scale 

by diamine-acid condensation in PPA126(Figure 2-15.a). High molecular weight 

ABPBI can be obtained by addition of P2O5 to enhance the dehydrating properties of 

PPA.109 
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Figure 2-15 Synthesis of ABPBI in a. PPA and b. MSA/P2O5

 

A new method for the synthesis of ABPBI by self-condensation of 

3,4-diamiobenzioc acid in MSA/P2O5 media at 150oC was reported recently (Figure 

2-15.b).28 Table 2-7127 lists the ABPBI for the purpose of PEM fabrication 

synthesised by different groups with different molecular weights. Although ABPBI 

with very high molecular weight was achieved, Asensio et al.127 considered that an 

ABPBI polymer with inherent viscosity around 2.3-2.4 dl.g-1 was enough to prepare 

good membranes from MSA. 

 
Table 2-7 Polymerisation conditions and molecular weights achieved by different laboratories 

Polymerisation conditions Viscosity / dl.g-1 and molecular 
weight / g.mol-1 achieved 

2 hours / 200°C / recrystallized DABA 
    DABA/ P2O5/PPA:1/7/3.22 

    [η]=7.33 
    Mw=53,000 109 

5 hours / 200°C / N2 / 97% DABA 
    DABA/PPA=2.4/50 

    ηinherent=2.4 
    [η]=3.04 
    Mw=23,800 127 

1.5-12 hours at 160°C 
    DABA/PPA=1/35 

    ηinherent=0.86 128 

40 Mins/150°C/ N2 / recrystallized DABA 
    DABA/ P2O5/MSA=2/3/20 

    ηinherent=1.81 28 
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When new reaction media (TFA/MSA for PBI & MSA/P2O5 for ABPBI) were 

employed, the newly developed method had these advantages: 

 

 Reaction temperature was quite low (150°C); 

 Reaction time was extremely short (less than 1 hour); 

 Molecular weights of the polymers could be controlled simply by changing the 

ratio of the solvents; 

 Membranes fabrication can be directly cast. 

2.5.3 Fabrication of PBIs membranes 

Because of the structural rigidity, PBIs can only be dissolved in strong acids (i.e. 

H2SO4, H3PO4, HNO3, HCl ect.), strong bases (i.e. KOH or NaOH/ethanol etc.), and 

in a small number of organic solvents, such as dimethylsulfoxide(DMSO), 

N,N-dimethylacetamide (DMAc), N,N- dimethylformamide (DMF), 

N-methylpyrrolidone(NMP).118 Thus there are a very limited number of solutions 

employed for the fabrication of PBIs membranes, using two main methods i.e. 

casting and direct casting. 

 

As a typical procedure of a membrane made by the casting method, firstly the 

pristine polymer is dissolved in a solvent to form a homogeneous solution. Then the 

membrane is formed by pouring the homogeneous solution onto a glass plate (or 

petri dish), which normally needs to be boiled in an acid or basic solution and 

washed with deionised water to remove the solvent. Finally, the purified membrane 

is immersed in different concentrations of H3PO4 solutions to achieve acid-doped 

membranes with various acid doping levels. PBIs membranes were initially cast from 

a NaOH/Ethanol solution under N2 environment111, 129. Currently most of PBI 

membranes were typically prepared by forming a 3-5wt% suspension of PBI in the 

DMAc/LiCl solution followed by heating and filtration to obtain concentrated 

20wt% PBI solution then casting onto a glass plate.10, 16, 19, 21, 49, 107, 108, 114, 130  

 

For a direct casting method, once the synthesis of polymer is finished, the hot 

solution is poured onto a glass plate and cools to form a membrane followed by 

purification and dryness processes. ABPBI membranes were produced easily by 

direct casting with use of MSA/P2O5 solvents.28, 30 PBI membranes with a well 
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controlled acid doping level were also reported by direct casting from TFA/P2O5 and 

a mixture media of TFA/MSA/P2O5, respectively.131 The main benefits of using the 

direct casting method include the fact that the later method saves a step of 

purification of the polymer after synthesis and before fabrication of membrane and 

the membrane is obtained with a controlled acid doping level (acid molecule per 

polymer repeat unit). Particularly, the direct casting method is more convenient since 

the nitrogen atmosphere is not necessary. Asensio et al.132 reported that, with the 

same doping level, the direct acid casting ABPBI membrane had higher crystallinity 

but lower conductivity compared to the acid soaking ABPBI membranes, which was 

attributed to the dehydration of the phosphoric acid during MSA evaporation at 

150~200oC. 

 

A sol-gel process was described as producing PA-doped PBI membranes.124 After 

polymerisation, the PBI solution in PPA was directly cast without isolation or 

re-dissolution of the polymers. The solution temperature also dropped from the 

casting temperature to room temperature. The hydrolysis of the solvent from PPA (a 

good solvent for PBI) to H3PO4 (a poor solvent for PBI) combined with the 

temperature drop induced a transition from the solution state to the gel state that 

produced PBI membranes doped with H3PO4 in one step. Upon casting, hydrolysis of 

the PPA to H3PO4 induced a sol-gel transition which produced membranes with a 

desirable suite of physicochemical properties. In fact, during the overall membrane 

fabrication process, a direct casting was followed by the sol-gel process. 

2.5.4 Properties of acid doped PBIs PEMs 

2.5.4.1 Properties of Phosphoric acid doped PBIs membranes 

As a PEM for operating at high temperatures, the acid doping level and proton 

conductivity are the key parameters for estimating its performance if a fuel cell 

system test is absent. The proton conductivity of PBI was first studied more than 35 

years ago.129 For phosphoric acid doped PBI membranes, the conductivity has been 

measured by several groups. 

 

The influence of temperature, humidity and acid doping level (the number of acid 

molecule in per repeat unit of PBI) were studied from a lot of works. Typically, Li et 
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al.10 measured conductivity as a function of temperature and 3.0~16.0 of acid doping 

levels (the number of acid molecule in per repeat unit of PBI) at RH (relative 

humidity) between 80%~85%. A conductivity of 4.6×10-2 S.cm-1 at 165oC was 

obtained. In their work, H3PO4 doping level between 3.5~7.5 was suggested for an 

appropriate quality membrane to have both conductivity and mechanical strength. 

Kawahara et al.115 prepared H3PO4 doped PBI membranes by immersing the PBI 

membranes into a mixed solution of acid and methanol. The conductivity of the 

anhydrous PBI·2.9H3PO4 (i.e. PBI with 2.9 of H3PO4 doping level) reached 

10-4S.cm-1 at 160oC. Different acid doping levels are relative to different route of 

proton transfer. To improve acid absorbility, a porous PBI with a high doping level 

up to 14.6 was prepared by Mecerreyes et al.133 The porous structure was formed by 

leaching out a low-molecular-weight porogen (such as phthalates or triphenyl 

phosphate) using a selective solvent of the porogen from polymer/porogen mixtures. 

The proton conductivity of these acid doped porous membranes with high doping 

levels was up to 10-2 S.cm-1 at 140oC and 0%RH. However, the mechanical 

properties were greatly affected due to up to 70% of the porosity of the membranes. 

Ma et al.14, 100 proposed that the order of the proton transfer rate between different 

species were: H3PO4 to H2O>H3PO4 to H2PO4
->N+-H to H2PO4

->N+-H to H2O>N+-H 

to N-H. Broadly speaking, at the low acid-doping level i.e. lower than 2, proton 

exchange most like happens between protonated and unprotonated imino nitrogen 

groups on the neighbouring polymer chains; at the high doping level, i.e. between 

4-6, the proton transfer is proposed to happen mainly along the acid and anion chain 

or the acid and water; at the higher doping level, i.e. above 6.3, the environment for 

proton transport is similar to concentrated phosphoric acid and the proton 

conductivity is mainly contributed by molecular phosphoric acid.11, 100 

 

The influence of pressure on the conductivity and activation volume of phosphoric 

acid doped PBI membranes was also studied. Fontanella et al.19 measured the proton 

conductivity at compression of up to 0.25GPa. At room temperature the conductivity 

decreases with increasing pressure due to the viscosity increase. Based on the 

estimation of activation volume values (4~7 cm3/mol) of acid doped PBI, it was 

proposed that proton transport in the acid-doped PBI was mediated by segmental 

motions of the polymer. Bouchet et al.20, 130 proposed an activated mechanism 

(Grotthuss mechanism) for the proton migration from conductivity data as a function 
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of temperature (30~90oC) and isostatic pressure (1~4000 bars). They suggested that 

the proton migrates from a protonated imide site to a neighbouring unprotonated one. 

Pu et al.116 also studied the temperature and pressure dependence of the conductivity 

of PBI·xH3PO4 membranes. They reported that the activation energies of proton 

migration in PBI membranes with phosphoric acid doping levels of 1.8~3.8 were 

70~85kJ/mol and the activation volume decreased with increasing temperature. A 

negative activation volume for 85% phosphoric acid at 75oC was observed by 

Fontanella19, which suggested that only a small charge carrier and a solvent-free 

proton transported through the membrane. 

 

Additionally, the influence of membrane morphology and processing on the proton 

conductivity were studied by Jayakody et al.134 They found the proton diffusivity is 

about an order of magnitude higher in PBI membranes cast from polyphosphoric acid 

(PPA) than in which cast from DMAc, indicating an additional proton transfer 

mechanism existed involving rapid exchange between phosphoric acid and 

pyrophosphoric acid species. 

2.5.4.2 Properties of Phosphoric acid doped ABPBI membranes 

Asensio et al.132 found that ABPBI·3H3PO4 membrane with a direct casting 

procedure had a conductivity of 1.5×10-2 S.cm-1 at 180oC in dry conditions compared 

to a conductivity of 2.5×10-2 S.cm-1 at the same condition from ABPBI·2.7H3PO4 

membrane with a casting procedure. The relative lower conductivity and larger 

activation energies were considered due to the dehydration of H3PO4 during MSA 

evaporation at 150-200oC. They also found that the higher crystallinity of the acid 

membrane caused the reduction of the proton conductivity. Uchida et al.135 reported 

that, under 100% RH, ABPBI·1.4H3PO4 showed conductivity as high as 1.2×10-1 

S.cm-1 at temperatures below 120oC, but decreased to 2.5×10-2 S.cm-1 above 150oC, 

which was also ascribed to a dehydration of the doped acid. Kim et al.28 reported 

higher conductivities of 2.6×10-2 S.cm-1 for ABPBI·1.6H3PO4, 4.1×10-2 S.cm-1 for 

ABPBI·2.4H3PO4 and 6.0×10-2 S.cm-1 for ABPBI·3.7H3PO4 at 110oC without 

external humidification. 
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2.5.4.3 Other acid doped PBIs membranes 

It is worthwhile highlighting that a comprehensive work of comparing the 

conductivity of PBI membranes doped with various acids has been carried out by 

Xing and Savadogo et al.136 In their work, the conductivity measurements were made 

across the membrane in an acid solution using four-point probe technique and the 

conductivity was changed in the order of H2SO4>H3PO4>HClO4>HNO3>HCl for 

high doping levels. 

 

Various strong acids (i.e. H2SO4, CH3SO3H, or C2H5SO3H) doped PBI have been 

studied by Sanui et al.8, 115 The onsets of thermal decompositions for PBI/H2SO4, 

CH3SO3H, and C2H5SO3H complexes started from 330, 240, and 220oC, respectively, 

indicated the complexes bearing a loss of thermal stability. In addition, poor proton 

conductivities (10-6~10-9 S.cm-1 at 100oC) were thought far from applications in a 

PEMFC. 

 

As mentioned before, one of the shortcomings for phosphoric acid doped PBI 

membranes with high acid doping levels is bearing the acid leaching out when the 

environmental humidity is high. To avoid that, aromatic mono-and di-esters of 

phosphoric acid were developed by Akita et al.128 Their work showed that the novel 

acid based PBI membranes had excellent stabilities in the presence of water and 

methanol but low water absorbility due to the substitution of at least one hydroxyl 

group. 

2.5.5 Modified PBIs Membranes 

2.5.5.1 Composite membranes of PBIs with inorganic fillers 

Several groups have been studying on the composite membranes of PBI containing 

inorganic fillers in order to improve proton conductivity, reactant crossover 

resistance, mechanical properties at high temperatures etc.77, 100, 137, 138 

 

PBI composites have been prepared by blending with inorganic proton conductors, 

such as heteropolyacids and hygroscopic moiety etc. Xing et al.136 reported that 

phosphotungstic acid (PTA or PWA, H3PW12O40·nH2O) doped PBI membranes 

bearing very low proton conductivity (of the order of 10-6 S.cm-1) were due to the 
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leach-out of the acid, which has low interaction with the polymer, as well as the 

microsized dispersion of fillers in the PBI matrix. To retain the acid in PBI 

membrane, sol-gel process prepared silica-immobilized phosphotungstic acid 

(PTA/SiO2)84 and silica-immobilised silicotungstic acid (STA or SWA, 

H4SiW12O40·nH2O) (STA/SiO2)85, 139 were used as fillers in PBI membranes. It was 

found that PBI-PTA/SiO2 membranes were chemically stable in boiling water and 

thermally stable in air up to 400oC. The highest conductivities of 3×10-3 S.cm-1 at 

100oC and 100%RH atmosphere and 1.4×10-3 S.cm-1 at 150oC and 100%RH 

atmosphere were obtained from PBI-60wt% PTA/SiO2 (PTA/SiO2 weight ratio of 

30/70) composite membranes. Similarly, PBI-50wt% STA/SiO2 (STA/SiO2 weight 

ratio of 45/55) composite membranes had up to 3×10-3 S.cm-1 of conductivity at 

160oC and 100%RH atmosphere. However, these conductivities were still too low for 

PEMFC applications. 

 

Since phosphoric acid have an excellent performance in proton conducting and those 

heteropolyacids composited PBI membranes have very low conductivity, PBI 

composite membranes prepared by incorporating with inorganic heteropolyacid 

followed by H3PO4 doping process were developed. The inorganic fillers, including 

zirconium phosphate (ZrP, Zr(HPO4)2·nH2O), PTA and STA, were reported by He et 

al.91  Compared to H3PO4 doped PBI membranes with same acid doping level, PBI 

composite -15wt% ZrP/H3PO4 gave higher conductivities over the whole temperature 

and RH range, whilst PBI-30wt%PTA/H3PO4 and PBI-30wt%STA/H3PO4 gave a 

higher or comparable conductivity only below 110oC, and lower conductivity above 

110oC due to the water loss. Recently, a CsPOM/PBI/H3PO4 (CsPOM, 

Cs2.5H0.5PMo12O40) composite membrane was prepared by Li et al.140 The composite 

membrane, doped with H3PO4 had a higher proton conductivity (>1.5×10-1 S.cm-1) 

than that of a phosphoric acid doped PBI membrane and was thermally stable above 

200oC. 

 

Several heteropolyacid , such as phosphomolybdic acid (PMo12, H3PMo12O40)141, 142 

and Zirconium pyrophosphate (ZPP)143 have been used for preparation of ABPBI 

composite membranes as well. Compared to the pure ABPBI membrane, the 

ABPBI-PMo12 hybrid membrane promoted the uptake of H3PO4 and therefore 

increased the proton conductivity under the same conditions. The highest proton 
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conductivity of H3PO4 doped ABPBI-45wt% PMo12 hybrid membrane is up to 

3.0×10-2 S.cm-1 at 185oC in air141. ABPBI/ZPP composite membranes were prepared 

by PPA direct casting method. The incorporation of 10-20wt% ZPP into membranes 

improved thermal and dimensional stabilities; meanwhile ABPBI/ZPP/H3PO4 

membranes had high conductivities above 1.2×10-1 S.cm-1 at 180oC. 

2.5.5.2 Sulphonated PBIs membranes 

In section 2.4.2, three different methods for preparing sulphonated polymer 

membranes, i.e. sulphonation, grafting and synthesis of derivatives and copolymers, 

have been mentioned. Those methods have also been used to modify PBI 

membranes. 
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Figure 2-16 Sulphonation of benzimidazole group 
 
Table 2-8 Sulphonation of PBI membrane and its properties 

Sulphonation conditions Remarks 
Immersion Heating Sulphonation 

degree 
(xSO3H/PBI, x=) 

Conductivity 

96% H2SO4, 
48 hrs at 40oC 

200oC 
300oC 

0.95-1.46 109 - 

96% H2SO4/P2O5
2-24hrs,150-200oC 

 1.9-2.2 100 
(-SO3 detected by IR)

- 

10% H2SO4, 
24 hrs at 25oC 

5 min at 450oC in 
air 

0.6 after immersion, 
41%-SO3 after heating

3.5×10-2S.cm-1 at 
185oC141 

2.5% H2SO4, 
2 hrs at 50oC  

0.5-1 min at 450oC 0.93144 -  

5-20% H2SO4, 
1 hr at 50oC  

2 min at 475oC 
2 min at 350oC 

- 
No -SO3 group 

7.5×10-5S.cm-1 at 
160oC&100%RH145

2.5% H2SO4, 
2 hrs at 50oC  

0.5-2 min at 450oC 24% of PBI repeated 
units sulphonated 

2.3×10-6S.cm-1 at 
40oC&100%RH 146
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Kuder and Chen144 described the process for direct sulphonation of PBIs (Figure 

2-16). When immersed in a dilute sulphuric acid solution, the imidazole group in a 

PBI repeat is protonated by the sulphuric acid to form a sulphate-ionic salt. After 

heating, the ionic bond is converted to a permanent, covalent C-S bond. The 

conditions and results of sulphonated PBI by different groups are summarized in 

Table 2-8100. Obviously, the sulphonation degree is greatly changed with various 

sulphonation conditions. 

 

Compare to sulphonation introduced above, the degree of sulphonation (SDs) or 

numbers of sulphonic groups can be well controlled by using grafting and 

copolymerisation methods. 

 

For the method of grafting, the presence of the N-H group allows the PBI to be 

treated with a sulphonated side chain reagent to form an water soluble N-substituted 

alkyl- or arylsulphonated polymer.147 The degree of sulphonation can be controlled 

by the extent of activation of the polymer (number of N-H groups ionised) and the 

degree of grafting on to the activated sites148. Chemically grafted benzylsulphonic 

acid PBI (Figure 2-17.a) was developed mainly by Gieselman et al.147, 149 and Glipa 

et al.148, 150 It was reported that the conductivity of 1.0×10-2 S.cm-1 at 50oC and 100% 

RH of the membrane with a sulphonation level of 75% was close to that of Nafion 

117 under the same conditions.148 However, one major disadvantage of these water 

soluble membranes is that they tend to shrink and loose their flexibility and 

conductivity at low levels of humidity.150 Ogata et al. mainly developed 

sulphoalkylation of PBI with a similar method.151, 152 PBI-PS (propanesultone) 

(Figure 2-17.b)151 showed proton conductivity in the order of 10-3S.cm-1 in the 

temperature range from 100~140oC at low humidity. Compared to PBI-PS, PBI-BS 

(butanesultone) (Figure 2-17.c)152 provided higher conductivity at high temperatures 

with low RH (close to 10-3 S.cm-1, at 100~160oC, RH<100%) which was attributed to 

the relatively longer length of -SO3 parts of PBI-PS, which might result in relative 

free movement of the hydrophilic parts. Ethylphosphorylated PBI (Figure 2-17.d)8 

was also synthesised with the same procedure. But the resulting polymer was 

insoluble in organic solvents. However, this membrane showed a high proton 

conductivity of 10-3 S.cm-1 even as a compressed pellet. 
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Figure 2-17 Scheme of chemically grafted PBI 
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Figure 2-18 Sulphonated PBI by synthesis from monomers containing sulphonic 

groups 

 

The method of synthesis with monomers bearing sulphonic groups, was mainly used 

for PBI derivatives153 and copolymers154-156. Asensio et al. found that the maximum 

conductivity of poly[m-(5-sulfo)-phenylenebezobisimidazole] (SMPPBBI)153 (Figure 

2-18.b) with H3PO4 doping level of 3.6 was 2.0×10-6 S.cm-1, which was higher than 

that of poly(m-phenylenebezobisimidazole) (MPPBBI) with same doping level 

(9.0×10-8 S.cm-1). Qing et al. synthesised sPBI-IS155 (Figure 2-18.c) and sPBI-SS154 

(Figure 2-18.d) by solution copolycondensation in PPA. The resulting polymer 

membranes with high hygroscopicity show potential application as the high 

temperature PEM in fuel cell. Recently, they copolymerised sPBI-NF156, 157 (Figure 

2-18.e&f) and the highest conductivity of this copolymer reached up to 2.7~2.8×10-3 

S.cm-1 at 90oC and 100%RH. Recently Bai and Winston158 synthesised sulphonated 

PBI copolymers and prepared PEMs through an in-situ phase inversion technique, 
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which showed extremely high conductivities (>1.0×10-1 S.cm-1) at high temperatures 

(>120oC), presenting a potential for high temperature application.  

2.5.5.3 Polymer blends of PBIs with other polymers 

A high degree of sulphonation leads to poor mechanical properties of the membranes 

and a high acid doping level has a potential problem of acid leaking from the 

membranes. Therefore, ionic cross-linking structures have been introduced into the 

preparation of polymer membranes. Flexible ionomer networks can be prepared from 

acid-based polymers by ionically and/or covalently cross-linking (Figure 2-19) of 

polymeric acids and polymeric bases,159-162 as reviewed by Kerres163 and recently by 

Li et al.11 

 

SO3H SO3H SO3H

SO3H SO3
-SO3

-

NR2H+ NR2H+

NR2

a. Ionically cross-linked blends
SO3H

SO3H

SO3H

SO2

SO2

Cross-l inking bridge

b. Covalently cross-linked blends 
Figure 2-19 Scheme of cross-linked acid based membranes: a. ionically cross-linked and b. 
covalently cross-linked blends 
 

The commercially available acidic polymers used to be blended with basic PBI 

polymer include sulphonated polysulphone (SPSF)164, sulphonated 

polyetheretherketone (SPEEK)165, sulphonated poly(arylene thioether)s166, and 

sulphonated poly[bis(phenoxy)phosphazene] (SPOP)167 etc. Based on FTIR, 

FT-Raman spectra and IEC results17, 159, 161, 168, a strong interaction between the N-H 

bonds of PBI and sulphonated or/and sulphone groups of the polymer acids in the 

polymer blend was suggested. 

 

In order to enhance chemical stability and improve the flexibility of cross-linking 

polymer membranes, sulphonated partially fluorinated arylene main chain polymers 

have recently been synthesised and blended with PBI which were demonstrated on 

fuel cells by Kerres and Li et al.169-172 These PBI blended membranes exhibit 
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excellent thermal stability. Phosphoric acid-doping levels as high as 11~12 have 

been achieved with high proton conductivities (above 1.0×10-1 S.cm-1), less acid 

swelling, reasonable mechanical strength and therefore better fuel cell performance. 

 

Recently, blends of ABPBI-Poly(vinylphosphonic acid)(PVPA) were prepared.173, 174 

Acar et al.173 reported that the conductivity of ABPBI/PVPA blends increased with 

elevated ratio of PVPA and the highest conductivity of 4.0×10-3 S.cm-1 was achieved 

at 20oC and 50%RH. In Akbey et al.’s work174, the complex with a 1:1 mixing ratio 

had the lowest activation energy for proton mobility, and at the same time contained 

the most structured hydrogen bonded protons. Very recently, Acar et al.175 also 

prepared the blends of ABPBI-poly(styrene sulfonic acid) (PSSA). The blended 

membrane of ABPBI/PSSA with molecular ratio of 1:2 showed the proton 

conductivity of 2.0×10-2 S.cm-1 (ambient temperature, RH=50%) which was at least 

five-order of magnitude higher than that of anhydrous material. 

 

However, ionically cross-linked membranes normally suffered from poor thermal 

stability in aqueous media as the ionic cross-link breaks at higher temperatures.163 

The covalent cross-linked membranes showed good chemical stability in the aqueous 

acidic environment and mainly developed by Kerres et al.176-178 However, no 

covalently cross-linked membranes based on PBI are reported so far. 

2.6 Brief Introduction of POSS 

Compared to macroscopic composites, nanocomposites present non-linear changes in 

properties.179 Generally, the properties of organic/inorganic hybrid nanocomposites 

are higher than the sum of the individual contributions of both phases. The improved 

properties of organic/inorganic hybrid nanocomposites result from the interfacial 

interactions between individual components and have been arousing great interest.180, 

181 The polyhedral oligomeric silsesquioxanos (POSS) belong to the family of these 

new hybrid materials.182, 183 Oligomeric silsesquioxanes were first synthesised in 

1946184, but only in the last decade have been developed in several applications.  

 

POSS are produced by sol–gel techniques through hydrolytic condensation of 

tri-functional monomers RSiX3 (X presents a highly reactive substituent, such as Cl 

or alkoxy) with a diameter around 0.53 nm of an inorganic central core surrounded 
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by eight organic groups or hydrogen, R, providing the empirical formula of (RSiO)1.5 

(Figure 2-20).185 In a POSS hybrid composite, POSS cages can be introduced into 

polymer systems via physical blending or chemical reactions (i.e. copolymerisation).  

Currently, the method of copolymerisation is mostly employed because it involves 

the formation of chemical bonds between POSS cages and polymer matrices, 

resulting in the fine dispersion of POSS in the polymer matrices. However, 

nanocomposites obtained by physical blending were less frequently reported, which 

might be possibly due to the unfavourable miscibility of silsesquioxanes with 

polymers.186, 187  
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Figure 2-20 General structure of POSS 
 

Owing to the hybrid organic/inorganic structure and therefore possessing unique 

properties, the great interest is focused on POSS building blocks in the 

nanocomposites. For example, POSS were used in from low dielectric constant 

materials to new resists for electron beam lithography materials and high temperature 

lubricants.185 To achieve multifunctional materials with intermediate properties 

between organic polymer matrices and inorganic ceramics, the preparations of novel 

polymeric compositions, polymer nanocomposites and hybrids are greatly 

highlighted among the various applications of POSS.185, 188 

 

Recently, Eshel et al.189 prepared nanocomposite hydrogels containing epoxy 

functionalised POSS. In their work, with less than 5% epoxy functionalised POSS 

incorporated into the hydrogel, water swelling increased by more than 120% and 

storage modulus by 300% compared to the neat hydrogel, which was due to the large 

surface area of the nanosize POSS particles affecting water-swelling behaviour and 

mechanical properties of hydrogel. Very recently, Subianto et al.190 prepared 

Nafion/POSS composite PEM. Due to the hygroscopic POSS cores and the 
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functional groups from sulphonated POSS, the proton conductivity and mechanical 

properties have been greatly improved. 

2.7 Summary 

PEMFCs are receiving increasing attention due to their abilities as power generators 

for both stationary and transportation applications. The main features of PEMFCs are 

high power density, pollution free operation and all-solid construction; and, therefore, 

less corrosion. The most successful membrane, i.e. Nafion membrane, can only offer 

reasonable performance below 90oC under fully hydrated conditions. The potential 

operation of PEMFCs at high temperatures (i.e. >100oC) can provide many 

advantages therefore are focused on by many researchers. 

 

To achieve high temperature operation of PEMFC, acid-based polymer membranes 

represent an effective approach. The phosphoric acid doped PBI membrane seems so 

far the most successful system in the field. However, the acid leaching prevents the 

phosphoric acid doped PBI membrane from using at low temperatures and causes 

problems of long-term stability. Therefore, to retain phosphoric acid in the 

membrane at various temperatures and humidity is extremely important for the 

acid-based membrane. The chemically bonded functional groups onto the polymer 

exhibit a promising way to solve the problem, as well as composite membranes of 

PBI with other functional fillers, which can lessen this problem to some extent. Both 

of these membranes show lower conductivity and higher dependence on humidity 

and need further optimisation. Even so, it is important to understand the mechanism 

of proton conduction in these membranes in a fundamental molecular-based point in 

order to design new membranes. 
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3.1 Chemicals 

The main chemicals used in this project are listed in Table 3-1. 
 
Table 3-1 Chemicals used in this project 

Chemicals Main Properties Manufacturer 
3,3’-diaminobenzidine 
(DAB) 

Purity: 99% 
Mw: 214.27 g/mol 
Melting point: 175-177oC 

Sigma-Aldrich Co. Ltd 

Isophthalic acid (IPA) Purity: 99% 
Mw: 166.13 g/mol 
Melting point: 341-343oC 

Sigma-Aldrich Co. Ltd 

3,4-Diaminobenzoic 
acid (DABA) 

Purity: 97% 
Mw: 152.15 g/mol 
Melting point: 215-218oC 

Sigma-Aldrich Co. Ltd 

Polyphosphoric acid 
(85% P2O5) (PPA) 

Density: 2.050 g/mL Sigma-Aldrich Co. Ltd 

Phosphorus pentoxide 
(P2O5) 

Purity: 99+% 
Melting point: 340oC 

Sigma-Aldrich Co. Ltd 

Methanesulphonic acid 
(MSA) 

Purity: 99+% 
Mw: 96.11 g/mol 
Density: 1.481g/mL 
Boiling point: 167oC 

Fisher Scientific UK 

Sodium hydroxide 
(NaOH) 

Mw: 40.00g/mol 
Density: 2.13g/mL 

Sigma-Aldrich Co. Ltd 

Phosphoric acid (PA) Purity: 84% 
Boiling point: 158oC 

Fisher Scientific UK 

96-98% Sulphuric acid Purity: 96-98% Fisher Scientific UK 

Hydrazine hydrate 1.005g/mL Sigma-Aldrich Co. Ltd 

Activated Carbon / Sigma-Aldrich Co. Ltd 

Acetic acid Density: 1.463g/mL Sigma-Aldrich Co. Ltd 

TriSilanolPhenyl POSS 
(SO-POSS, SO1458) 

Mw: 931.34 
Solvent solubility: Ethanol 

Hybrid Plastic, Inc., USA 

OctaAmmonium POSS 
(AM-POSS, AM0285) 

Mw: 1173.18 
Solvent solubility: water 

Hybrid Plastic, Inc., USA 

H2O2 Density: 1.463g/mL Fisher Scientific UK 

Nafion 117 Thickness: 175µm 
IEC: 1100 mequiv.g-1

DuPont Co. USA 
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3.2 Synthesis of Polymers 

A general procedure of synthesis is showed in Figure 

3-1. The synthesis was carried out in the media of 

methanesulphonic acid (MSA) and phosphorus 

pentoxide (P2O5), a two-neck round flask (250mL, 

Fisher Co.) with a magnetic oval stir bar 

(35mm×10mm, Fisher Co.) was used as shown in 

Figure 3-2. For the purpose of investigating the effect 

of different stirring styles (i.e. magnetic and mechanical 

stirring) on the molar mass of ABPBI, a PTFE stir rod 

was used instead of magnetic stir bar. When ABPBI 

and PBI were synthesised in the medium of 

polyphosphoric acid (PPA) respectively, a smaller set 

including a reaction tube (50mL, Fisher Co.) and a 

magnetic stir bar (25mm×6mm, Fisher Co.) was used 

instead of the above set. All the synthesis was carried 

out at a nitrogen (N2) atmosphere by purging N2 gas 

through two needles inserted into the rubber plugs. 

Before synthesis, the synthesis set was purged with N2 

stream for 1 hour to empty air.  
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Figure 3-1 A procedure of polymer 
synthesis 
 

 

 
Figure 3-2 Polymer synthesis set 
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3.2.1 Synthesis of poly(2,5-benzimidazole) (ABPBI) 

3.2.1.1 Purification of 3,4-diaminobenzoic acid (DABA) 

The purification procedure28 of the monomer 3,4-diaminobenzoic acid (DABA) is 

illustrated in Figure 3-3. 20.0g of commercial DABA was dispersed in 250mL of 

water at 70°C. Hydrazine hydrate was added until a homogeneous solution was 

obtained. Activated carbon black (10 g) was added to the reaction mixture which was 

heated at 70°C for 30 minutes. The mixture was filtered through a filtrator whilst hot. 

 

After cooling the filtrate to room temperature, acetic acid was added slowly until the 

precipitation had formed. It was placed under an ambient condition for 24 hours. The 

precipitates were then collected and dried under reduced pressure for 36 hours at 

70°C in a vacuum oven. 

 

DABA dispered
in water at 70oC

Hydrazine hydrate

Homogeneous solution

Activated carbon black
Heated, 30 Min

Mixture

Filtered, cooled
Acetic acid

Light pink crystals

In a vacuum at 70oC
under reduced pressure

Purified DABA
 

Figure 3-3 Flow chart of the purification of DABA 
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3.2.1.2 Synthesis of ABPBI in polyphosphoric acid (PPA) 

6.6mmol (1.000g) of DABA was added into 20.0g of the reaction medium of 

polyphosphoric acid (PPA) in a 50mL reaction tube. The synthesis procedure was 

shown in Figure 3-1. The synthesis was carried out at 200oC under N2 atmosphere for 

5 hours127. The hot polymer solution was slowly poured into the deionised water 

(500mL) to get fibre-like polymers. The obtained polymers were boiled in a beaker 

with 500mL 10% NaOH solution at 100oC for 2 hour to remove phosphoric acid and 

the solvent, subsequently boiled in 500mL deionised water for one hour to remove 

NaOH. After that, the polymers were washed with deionised water for several times 

to remove residual NaOH. Finally, the polymers were dried in an oven at 150oC for 

24 hours. The obtained brown fibre-like polymers were placed in a sealed flask. 

3.2.1.3 Synthesis of ABPBI in methanesulphonic acid (MSA) 

26.6mmol (4.183g) of DABA was mixed with 40mL of methanesulphonic acid 

(MSA) and 4.0~6.0g of phosphorus pentoxide (P2O5). The synthesis and refinement 

procedures were the same as that in PPA medium, except the synthesis was carried 

out at 140~160oC from 20 minutes to 3 hours. The commercial and purified DABA, 

mechanical and magnetic stirring styles were used, respectively. 

3.2.2 Synthesis of polybenzimidazole (PBI) 

3.2.2.1 Synthesis of PBI in PPA 

1.5mmol (0.320g) of DAB and 1.5mmol (0.250g) of IPA were mixed with 20.0g of 

PPA in a 50mL reaction tube. The synthesis worked at 200oC for 9 hours.122 The 

obtained dark purple liquids were poured into the 500mL deionised water to 

precipitate the polymer. During the precipitation process, a centrifuge was used to 

hasten the precipitation. After refinement and dryness treatments which were the 

same as that of ABPBI, the dark purple polymer powders were sealed in a flask. 

3.2.2.2 Synthesis of PBI in MSA/P2O5 

26.7mmol (5.891g) of DAB and 26.7mmol (4.430g) of IPA were mixed with 40mL 

of MSA and 6.0g of P2O5. The synthesis condition was at 150oC for 3 hours whilst 

the synthesis processes were the same as synthesised in PPA. 
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3.2.3 Synthesis of copolymers of ABPBI and PBI in MSA 

The copolymers of ABPBI and PBI were synthesised in the media of MSA/P2O5 with 

the amounts of monomers given in Table 3-2. These synthesises were carried out at 

150oC for 3 hours. During the refinement, a centrifuge was used. The other processes 

were the same as that of PBI synthesised in the media of MSA/P2O5.  

 
Table 3-2 Amount of monomers for synthesis of copolymers 

Molar ratio of monomers 
Monomer 

75:25 50:50 25:75 

DABA (97%), mmol (g) 20.0(3.137) 13.3(2.091) 6.7(1.046) 

DAB (99%), mmol (g) 6.7(1.473) 13.3(2.945) 20.0(4.418) 

IPA, mmol (g) 6.7(1.108) 13.3(2.215) 20.0(3.323) 

3.3 Synthesis of ABPBI/POSS Composites 

The ABPBI/POSS composites were synthesised in situ in the media of 40mL of 

MSA and 6.0g of P2O5. The reaction ran at 150oC for 3 hours with magnetic bar 

stirring at 400rpm. 

3.3.1 Synthesis of ABPBI/OctaAmmonium POSS composite 

The ABPBI/OctaAmmonium POSS (ABPBI/AM or ABPBI/OA-POSS) composites 

with different percentage of AM-POSS were synthesis. The amounts of AM-POSS 

and monomer DABA were given in Table 3-3. 

 
Table 3-3 Weight of monomers for synthesis of ABPBI/OctaAmmonium POSS composite 

Percentage of AM-POSS 

Chemical 1.0 wt.% 

(ABPBI/1AM) 

3.0 wt.% 

(ABPBI/3AM)

5.0 wt.% 

(ABPBI/5AM)

DABA (97%), g 1.021 1.000 0.979 

AM-POSS, g 0.010 0.030 0.050 

 

AM-POSS was added into 10mL of MSA followed by ultrasonication for 30 minutes 

in an ultrasonic bath to obtain a homogeneous transparent solution. Subsequently, 

DABA and 1.5g of P2O5 were added, followed by another 30 minutes of 
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ultrasonication treatment. Finally, the mixtures were synthesis at 150oC for 2 hours 

with a magnetic bar stirring at the rate of 400rpm. The procedures of synthesis and 

refinement were the same as described above. 

3.3.2 Synthesis of ABPBI/TriSilanolPhenyl POSS composite 

The amounts of TriSilanolPhenyl (SO-POSS) and monomer DABA for the synthesis 

of ABPBI/TriSilanolPhenyl POSS (ABPBI/SO) composites were shown in Table 

3-4. 

 
Table 3-4 Weight of monomers for synthesis of ABPBI/TriSilanolPhenyl POSS composite 

Percentage of SO-POSS 

Chemical 1.0 wt.% 

(ABPBI/1SO) 

3.0 wt.% 

(ABPBI/3SO) 

5.0 wt.% 

(ABPBI/5SO)

DABA, g 1.021 1.000 0.979 

SO-POSS, g 0.010 0.030 0.050 

 

The TriSilanolPhenyl POSS (SO-POSS) was dissolved first in 0.5~1.0mL of ethanol 

then added into 10mL of MSA followed by an ultrasonication until an 

even-distributed suspension obtained (around 1~2 hours). After that, DABA and 1.5g 

of P2O5 were added for synthesis. The synthesis process was the same as described 

above. 

3.4 Fabrication of Membranes 

In this project, two different methods for membrane fabrication, casting and direct 

casting, were employed (Figure 3-4). 

 

In the casting method (Figure 3-4a), 0.5g of polymer or composite material was 

dissolved in 10mL of MSA at 130oC for 2 hours to form a homogeneous solution. 

After that, the hot solution was poured onto a Petri dish, which was then put into a 

fume cupboard and heated up to 200oC for 24 hours to form a membrane. During the 

heating process, the temperature increased from 100~200oC gradually to avoid 

forming pin holes. With the time elapse, the Petri dish with the membrane was 

cooled down then immersed in the deionised water so that the membrane was peeled 

off from the Petri dish. The membrane was boiled in 10% NaOH solution at 100oC 

65 



Chapter 3 EXPERIMENTAL DETAILS 

for 1 hour to remove phosphoric acid and residual solvent then boiled in deionised 

water for another hour to remove NaOH. The membrane was rinsed by deionised 

water several times to remove the possible residual NaOH on the surface. Finally, the 

membrane was dried in an oven at 150oC for 24 hours. The obtained dry membrane 

was kept in a sealed glass container. 

 

In the direct casting (Figure 3-4b), the as-synthesised hot polymer or composite 

mixtures were poured onto a Petri dish and heated up to 200oC gradually for 24 hours 

to obtain a membrane. The subsequent purification of the membrane was the same as 

that used in casting method. Differing from that in the casting method, the 

time-consuming procedures i.e. the purification of polymer and the re-dissolution 

were avoided in direct casting. 

 

Refined polymer
   or composite
dissolved in MSA

Heating at 130oC
    for 2 hours
Stirring

Homogeneous solution

Casting onto a Petri dish
Heating up to 200oC
    gradually for 24 hrs

Solvent removed
     membrane

Cooling to below 100oC
Pouring in hot water

Separated membrane
Boiling in 10% NaOH solution
    at 100oC for 1 hour
Boiling in deionised water
    at 100oC for another hour
Rinsing with deionised water

Dryness in an oven
    at 150oC for 24 hours

Dry membrane

Refined membrane

Synthesised homogeneous
     polymer or composite
                solution

a. Casting method b. Direct casting method

Casting onto a Petri dish
Heating up to 200oC
    gradually for 24 hrs

 
Figure 3-4 Methods of membrane fabrications: a. casting; b. direct casting 
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3.5 Preparation of Phosphoric Acid doped membranes 

A series of phosphoric acid solutions from 2 to 12 M were prepared (Table 3-5). The 

molar concentration of phosphoric acid solution can be calculated by the following 

equation: 

 

( )
310)(

)/0.98/(%85/680.1/,
2

−×+
××

=
OHPA

PA
PA VV

molgmLgVLmolM            3-1 

 
where,  is the molar concentration of phosphoric acid solution,  is the 

volume of phosphoric acid (85wt.%), and  the volume of deionised water. 

PAM PAV

OHV
2

 
Table 3-5 Preparation of different concentrations of phosphoric acid solutions 

PAM , M 2 4 6 8 10 12 

PAV , mL 10.0 20.0 30.0 40.0 50.0 60.0 

OHV
2

, mL 62.7 52.7 42.7 32.7 22.7 12.7 
 

Phosphoric acid doping was carried out by immersing a dry membrane in a specified 

concentration of H3PO4 solutions for certain period of time (i.e. 7 days) at room 

temperature reaching equilibrium then the phosphoric acid doped membrane was 

rinsed with plenty of deionised water to remove free phosphoric acid on the 

membrane surface. Finally the surface water of the membrane was absorbed by filter 

papers. At that time, the membrane was considered as a saturated membrane. When 

the membrane was then placed at ambient atmosphere to reach equilibrium, the 

membrane was looked upon as a membrane at ambient atmosphere. Correspondingly, 

the membrane subsequently dried in an oven was defined as a dry membrane. For the 

purpose of measurements, it is necessary to identify these membranes at three 

different states, i.e. saturated, ambient atmosphere and dry conditions. 

3.6 Preparation of Nafion Membrane 

The pre-treatment of commercial Nafion 117 membrane employed the wide-used 

method191. Firstly, the Nafion 117 membrane was boiling in 3% H2O2 for at least 1 

hour, subsequently rinsing with boiling water for several times, then boiling in 0.5M 

H2SO4 solution for 1 hour, next to boil in deionised water for another 1 hour. Finally, 

the membrane was rinsing with deionised water several times. Those procedures 
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were purposed to remove the impurities. The obtained transparent Nafion membrane 

was kept in the deionised water before further characterisations and use. 

3.7 Characterisation 

3.7.1 Characterisation of chemical structures of the polymers 

3.7.1.1 Fourier transform infrared (FTIR) spectroscopy 

A FT-infra-red spectrometer (FTIR-8400, Shimadzu corp., Japan) was used with a 

resolution of 4cm-1 and 64 scans in the region of 4000-400cm-1. The polymer 

powders and POSS powders were measured with the transmission mode by preparing 

a thin film pressured with potassium bromide (KBr) pellets. The polymer membranes 

cast from a solution were measured by attenuated total reflectance (ATR) mode. For 

convenience of comparing the FTIR spectra of polymer powders and polymer 

membranes, the FTIR data based on transmission and ATR modes can be converted 

by the following equation192: 

 

TA 10log2 −=                                 3-2 

 
where T is the transmittance, %; A is the absorbance, AU. 

3.7.1.2 Elemental analysis 

A vario EL elemental analyser (ELEMENTAL Vario corp., German) was used to 

detect the content of carbon (C), hydrogen (H) and nitrogen (N).  

 

An ICP-AES (IRIS Advantage Thermo Jarrell Ash Co., USA) was used to determine 

the content of phosphorus (P) and sulphur (S) in samples. 

3.7.1.3 Characterisation of molecular weights of the polymers 

An Ubbelohde viscometer (Shanghai Qihang Analytical Instrument Company, China) 

with the diameter of 1.03 mm was used to measure the flow times in order to 

determine the molecular weight of synthesised PBI and ABPBI. 

 

Five concentrations of 0.2, 0.4, 0.6, 0.8, and 1 g/dl of PBI and ABPBI solutions were 

prepared, respectively. The polymers with specified weight (0.2, 0.4, 0.6, 0.8 and 
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1.0g) were dissolved in 100mL 98% H2SO4 and stirred for 24 hours to form 

homogeneous polymer solutions. Afterwards, flow times of all the solutions and the 

solvent were measured. All the measurements of flow times were carried out at 

30±0.1oC water bath. Before measuring, the viscometer containing a polymer 

solution was kept in 30±0.1oC water bath over 30 minutes to approach equilibrium. 

The inherent viscosities and the reduced viscosities were calculated by the following 

equations: 

 

( )
c

tt
inh

0ln
=η                                 3-3 

( )
c

ttt
red

00−
=η                               3-4 

 
where inhη and redη are the inherent and the reduced viscosities, respectively, dl/g; t 

is the flow time for each solution and t0 is the corresponding time for the solvent or 

98% H2SO4, s; c is the concentration of the polymer solution, g/dl. 

 

The intrinsic viscosity (or limiting viscosity number, [ ]η ) can be calculated from 

[ ] redcinhc
ηηη

00
limlim

→→
== . In other words a straight line can be obtained from the plot of 

inhη  or redη  (Y axis) against c (X axis) and an intercept of the straight line 

extrapolated to zero concentration is the value of [ ]η . 

 

The intrinsic viscosity can be readily related to the molecular weight of polymer, 

, through a semi-empirical equation (Mark-Houwink equation). By light 

scattering and intrinsic viscometry, Kojima et al.

wM
193, 194 and Wang et al.109, 195 studied 

the dilute solution properties of PBI and ABPBI, and found that the characteristic 

parameters depend on molecular weight distribution, respectively. The 

Mark-Houwink equations for PBI and ABPBI polymers are 

 

For PBI122: [ ] 7328.041035326.1 wM××= −η                   3-5 

For ABPBI127: [ ] ( ) 10.13 116107.8 wM××= −η                   3-6 
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3.7.2 Characterisation of mechanical properties 

Tensile strength was measured according to ASTM D638 by the universal testing 

machines (Model LR50K Plus, Lloyd Instrument, UK) with a dumbbell type 

specimen under the conditions: gauge length=10mm; width=2.5mm; crosshead 

speed=50 mm/min; load cell=1.0 kN. 

3.7.3 Characterisation of thermal properties of the polymers 

3.7.3.1 Differential scanning calorimetry (DSC) 

Two differential scanning calorimetry (DSC) instruments were used in this work. 

The DSC (Model 2010, TA instrument, Inc.) was used to measure the heat flow of 

materials (such as the DABA monomer, membranes etc.) with the temperature 

increasing from 25oC to around 350°C. Another DSC was assembled with TGA 

which can reach higher temperatures (>800oC). Samples of 5-10mg were examined 

in a nitrogen atmosphere. As for the measuring of the melting temperature of DABA 

monomer before and after purification, the heated rate was of 1oC/min, for other 

samples the heated rate was 10°C/min. 

3.7.3.2 Thermogravimetric analysis (TGA) 

A simultaneous TGA/DSC (2960 SDT V3.0F, TA Instruments Inc., USA) was used 

to trace the thermal degradation of the polymers and/or phosphoric acid, residual 

solvents and moistures. The glass transition temperatures (Tg) of polymers were also 

detected with DSC mode. Samples of 8-12mg were examined in a nitrogen 

atmosphere from room temperature to 900°C with a heated rate of 10°C/min. 

3.7.4 Characterisation of morphologies of membranes 

3.7.4.1 Scanning electron microscopy (SEM)/Transmission electron microscopy 

(TEM) 

A Field Emission Gun Scanning Electron Microscope (FEG-SEM) with electron 

high tension of 5.00 kV and working distance of 5~9mm was used to characterise the 

morphologies of polymer membranes. For conventional imaging in the SEM, 

samples must be electrically conductive at least at the surface, all the samples were 

coated by gold in this experiment. The energy dispersive X-ray (EDX) analysis was 

used to illustrate the distribution of elements (C, N, O, P and/or Si etc.). 

70 



Chapter 3 EXPERIMENTAL DETAILS 

 

The TEM investigation of POSS particles dispersion in the ABPBI/POSS composite 

membrane was performed with a JEOL 2000FX microscope and LINK analytical 

X-ray spectrometer. 

3.7.4.2 X-ray diffraction (XRD) 

A range of 5-75°with a Cu Kα radiation source operating at 40 kV and 40 mA was 

used for X-Ray diffraction (XRD) characterisation. The sample membrane was 

scanned under ambient conditions. The sample POSS powders were kept at 

refrigerated temperature for at least 24 hours prior to the measurement and spread on 

a microscope slide without further preparation, then scanned under ambient 

conditions. 

3.7.5 Characterisation of water and phosphoric acid uptakes of polymer 

and composite membranes 

3.7.5.1 Water uptake 

The dry sample membrane was immersed in deionised water to reach equilibrium (i.e. 

3 days) followed by absorbing the surface water by filter papers. At this stage the 

membrane was viewed at saturated condition. When continuously placed at ambient 

atmosphere to reach equilibrium, the membrane was considered as at ambient 

condition. Before drying in an oven, the sample membrane was regarded as a wet 

(hydrous) membrane. After dried at an oven at 150oC for 24 hours, the membrane 

was regarded as a dry (anhydrous) membrane. 

 

The water absorbility of undoped (no acid doped) membrane is represented by the 

water uptake which is calculated by following equation 

 

%100%, ×
−

=
dry

drywet

W
WW

uptakeWater                   3-7 

 
where  and  are the weight of wet and dry membrane, respectively, g.  wetW dryW
 

The water uptake of phosphoric acid doped membrane is calculated by  
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%100%, ×
−

=
undoped

drywet

W
WW

uptakeWater                   3-8 

 
where  and  are the weight of wet and dry membrane after acid doping, 
respectively,  is the weight of dry membrane before acid doping. 

wetW dryW

undopedW
 
It is noteworthy that, for the purpose of measuring the water uptake at saturated 

condition and ambient atmosphere, the relative weight of the wet membrane was 

measured from at saturated condition and the equilibrium condition at ambient 

atmosphere respectively. Whilst measuring the moisture absorbility,  was the 

weight of an original dry membrane placed at ambient atmosphere for certain period 

of time (i.e. 7 days) reaching equilibrium. 

wetW

3.7.5.1 Phosphoric acid uptake 

The dry membrane sample was soaked in phosphoric acid solution for certain period 

of time (i.e. 7 days) to reach equilibrium. The phosphoric acid absorbility of a 

polymer membrane can be characterised by acid doping level or acid uptake. Here, 

the former is defined as the phosphoric acid molecule per repeat unit of ABPBI 

polymer: 

 

( )
116

98

undoped

undopeddoped

W
WW

leveldopingPA
−

=                  3-9 

 
where  and  were the weight of dried membrane after and before 

doped in phosphoric acid. 

dopedW undopedW

 

The later is defined as the weight ratio of phosphoric acid and polymer: 

 

leveldopingPA
W

WW
uptakePA

undoped

undopeddoped ×=×
−

= 845.0%100%,      3-10 

3.7.6 Characterisation of conductivity of membrane 

A Solartron Analytical 1280 Electrochemical Measurement Unit (1280 EMU, 

Solartron Analytical Ltd.) was used to measure the impedance of membranes. The 

details are described in Chapter 6. 
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Chapter 4 RESULTS AND DISCUSSION: 

SYNTHESIS AND CHARACTERISATION OF 

POLYMERS AND POLYMER COMPOSITES 

4.1 Synthesis and Characterisation of ABPBI Polymer 

4.1.1 Chemical structure of poly(2,5-benzimidazole) (ABPBI) 

4.1.1.1 FTIR analysis of ABPBI 

Infra-red (IR) spectroscopy is a chemical analysis technique, which measures the 

infra-red intensity versus wave-number of light. The infra-red spectroscopy detects 

the vibration characteristics of chemical functional groups in a sample. When 

infra-red light interacts with the matter, chemical bonds will stretch, contract and 

bend. As a result, a chemical functional group tends to adsorb infra-red radiation in a 

specific wave-number range regardless of the structure of the rest of the molecule. 

Hence, the correlation of the band wave-number position with the chemical structure 

is used to identify a functional group in a sample. In this work the reactant or 

monomer 3,4-diaminobenzoic (DABA) and the polymer product were measured by 

FTIR to trace the changes of IR spectra of latent reactive groups and then confirm the 

typical structure of the product. 

 

The FTIR spectra of the commercial monomer DABA and synthesised polymers are 

shown in Figure 4-1. In the spectrum of the monomer DABA (Figure 4-1a), two 

sharp bands assigned to asymmetric and symmetric vibrations of primary amine NH2 

group are observed at 3320 and 3198cm-1, respectively; the dissociated two peaks at 

3443 and 3419cm-1 are attributed to vibration of hydrogen bonded NH2 group; the 

bending and twisting modes of NH2 groups are seen at 1582 and 833cm-1, 

respectively; whilst the vibration of C-NH2 appears at 1306cm-1. The most 

characteristic features of the carboxylic group are the two bands recognised at 1620 

and 1368cm-1 which are due to asymmetric and symmetric stretching vibrations of 

COO group; two other characteristic carboxylic group vibrations are C-O stretching 
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and C-OH bending. However, these bands are overlapped by those of aromatic chain 

vibrations196, i.e. the peaks of C-OH in-plane (at 1152cm-1) and out-of-plane bending 

(at 763cm-1) are overlapped by that of C-H in-plane and out-of-plane bending, 

respectively; the peak at 1306cm-1 is contributed to C-O stretching and C-H in-plane 

bending. In the aromatic structure, C-H stretching vibration is centred at 3073cm-1; 

C-H wagging is at 934 and 912cm-1; the regions of the out-of-plane bending of C-H 

(900-800cm-1) and in-plane bending (1080-1250cm-1) are found to be contaminated 

by C-O and C-OH stretching.196 The peak at 1439cm-1 is attributed to C-C stretching 

and C-H in-plane bending.196 
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Figure 4-1 FTIR spectra of (a) DABA monomer, (b) ABPBI synthesised in MSA and (c) ABPBI 
synthesised in PPA 
 

When ABPBI is synthesised from the monomer DABA, in the region 4000-2000cm-1, 

the vibration of N-H in benzimidazole groups is expected to occur; benzimidazole 

ring vibrations as well as in-plane CH, NH and CN deformation modes are expected 

to appear in the region 2000-1000cm-1; below 1000cm-1, cycle vibrations and 

out-of-plane NH and CH deformations are expectant as well. 
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The FTIR spectrum shown in Figure 4-1b is of the polymer synthesised in 

MSA/P2O5 media. In the high wave-number region, the sharp peak centred at 

3415cm-1 is attributed to the stretching vibration of isolated, non-hydrogen bonded 

N-H group, and the very broad, asymmetric absorption, approximately centred at 

3145cm-1, is assigned to self-associated, hydrogen bonded N-H group.105, 197 C-H 

stretching in benzene ring assigned at 3065cm-1 overlaps to the broad absorption of 

N-H group. The region from 1650 to 1500cm-1 is regarded as a very characteristic 

range for benzimidazole groups. The band at 1622cm-1 is for the C=C/C=N 

stretching whilst a strong absorption at 1541cm-1 is resulted from in-plane 

deformation of benzimidazole ring. Moreover, the breathing mode of the imidazole 

ring can also be seen at around 1281cm-1.105 It is noteworthy, compared to that of 

DABA, the reduction of 10cm-1 of C-C stretching (1429 vs. 1439cm-1) should be 

due to the effect from the adjacent imidazole ring, and the characteristic in-plane and 

out-of-plane C-H deformation vibrations also slightly shift due to the same reason. 

The assignments of ABPBI are listed in Table 4-2. Compared to the IR spectra of 

monomer DABA, the disappearance of characteristic bands of amino and carboxylic 

groups in the DABA monomer and appearance of typical bands representing 

benzimidazole structures indicate ABPBI polymer are synthesised successfully 

according to the reaction equation in Figure 2-15. As described in the chapter of 

literature review, ABPBI was generally synthesised from PPA medium in the lab 

scale. ABPBI was also synthesised from PPA medium in this work. Compared to that 

in MSA/P2O5, the similar IR curve (Figure 4-1c) shows ABPBI was successfully 

obtained by synthesising in PPA medium. 

4.1.1.2 Elemental analysis of ABPBI 

Elemental analysis is a process whereby a sample of some material is analysed for its 

elemental and sometimes isotopic composition. There are many different 

experimental methods for determining elemental composition. The most common 

type of elemental analysis is for carbon, hydrogen, and nitrogen (CHN analysis). 

This type of analysis is especially useful for organic compounds (compounds 

containing carbon-carbon bonds). The analysis of results is performed by 

determining the ratio of elements from within the sample, and working out a 

chemical formula that fits with those results. This process is useful as it helps 

determine if a sample is a desired compound and confirms the purity of a compound. 
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Inductively coupled plasma atomic emission spectroscopy (ICP-AES) is an analytical 

technique used for the detection of elements. It is a type of emission spectroscopy 

that uses the inductively coupled plasma to produce excited atoms and ions that emit 

electromagnetic radiation at wavelengths characteristic of a particular element. The 

intensity of this emission is indicative of the concentration of the element within the 

sample. Here it was used to trace the possible residuals of by determining the content 

of phosphorus (P) and sulphur (S) in samples. 

 

The polymer synthesised from DABA monomer in MSA medium was characterised 

by elemental analysis. As shown in Table 4-1, no phosphorus and sulphur were 

found, indicating the solvent of MSA and catalyst of P2O5 or H3PO4 were completely 

removed from the sample. 

 
Table 4-1 Element contents of ABPBI synthesised in MSA/P2O5 

Elements Calculated contents, wt% Measured contents, wt% 

C 72.40 52.40 

N 24.12 17.50 

H 3.47 5.56 

P 0 Not found 

S 0 Not found 

O 0 (24.54) 

C/N/H (mol ratio) 7/2/4 6.98/2.00/8.82 

 

In theory, the repeat unit of ABPBI is C7N2H4, or the calculated molar ratios of 

C/N/H 7/2/4. The found element molar ratios of C/N/H are 6.98/2.00/8.82, which is 

not the same as the calculated molar ratios. In another word, more hydrogen is found 

in the sample. Because of the hydrophilicity of ABPBI sample, it is reasonable to 

assume that the excess hydrogen might be from water and the remaining amount, 

24.54% (24.54%=100%-52.40%-17.50%-5.56%) oxygen from water as well. 

Thereby, the content of water is 26.61% (26.61%=24.54%×18/16), the content of 

hydrogen from water is 3.07% (3.07%=2×24.54%/16) and that of hydrogen from 

polymer 2.49% (2.49%=5.56%-3.07%). As a result, the molar ratios of C/N/H 

assigned to the sample are 6.98/2.00/3.98, which is fairly accordant with theoretical 

values. 
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4.1.2 Optimisation of reaction conditions for ABPBI synthesis 

In this work the method of homogeneous solution polymerisation was used for 

ABPBI synthesis. The monomer DABA was added into the MSA solution with P2O5 

as catalyst and after synthesis the obtained ABPBI polymer dissolved in the reaction 

media and formed a homogeneous solution. Since the condensation reactions take 

place between bi-functional monomer molecules and small molecules (i.e. water) is 

the by-product, the ABPBI synthesis is catalogued to condensation polymerisation 

(or polycondensation) or step-growth polymerisation. 

 

Sufficient molecule weights are essential for a polymer to possess the appropriate 

mechanical properties. The number-average molecular weight of ABPBI polymer 

can be predicted by following Carothers’ equation198 

 

p
pMM

M OHDABA
n

−

−
=

1
2                             4-1 

 
where nM  is number-average molecular weight of ABPBI,  is the 

molecular weight of monomer DABA and  the molecular weight of 

by-product water, p is conversion of function groups. 

DABAM

OHM
2

 

Since the by-product water is absorbed by catalyst P2O5 and equimolar monomer (i.e. 

equal numbers of functional groups) is used in this case, the above equation is 

simplified to 

 

p
xn

−
=

1
1

                                  4-2 

 
where nx  is the number average degree of polymerisation, p is the extent of 

reaction. The parameter p is related to the kinetics of step-growth polymerisation by 

the following equation198 
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77 



Chapter 4 RESULTS AND DISCUSSION: SYNTHESIS AND CHARACTERISATION OF POLYMERS 

where  is the concentration of monomer DABA,  is the rate constant of 

catalysed reaction and t the reaction time. 

0c 'k

 

According to Carothers’ equation (4-1, 4-2), to achieve ABPBI polymer with high 

molecular weight, the main routes are to remove by-product (i.e. water) in time and 

improve the value of p. Based on the reaction kinetics equation (4-3), the 

improvement of the value of p can be realised through increasing the values of , 

 and t. Therefore, the factors effected on these parameters, i.e. catalyst, reaction 

temperature, reaction time and purification of monomers were investigated. 

0c

'k

 

The techniques that have been described so far to measure the molecular weights of 

polymers in solution depend on the equilibrium properties of the polymer solution.199 

It is possible to relate the molecular weight of the polymer to the solution properties 

by studying the transport properties of polymer solutions (e.g. solution viscosity) 

through semi-empirical approaches, and the measurements are normally extrapolated 

to zero concentration where the solution exhibits ideal behaviour. In fact, solution 

viscosity is widely considered to provide a quick and simple method of determining 

the molecular weight of a synthetic polymer. Hence, the molecular weights of 

ABPBI were calculated from the intrinsic viscosities of polymer solutions through 

the Mark-Houwink equation which were given in detail in the chapter on 

experimental work. 

4.1.2.1 Effect of the amount of catalyst P2O5 on polymer molecular weight 

Synthesis of ABPBI polymer was carried out at 150oC with an atmospheric pressure. 

The removal of by-product of water was mainly through the absorbance of catalyst 

P2O5 and evaporation at high temperature. The viscosities and molecular weights of 

polymers obtained with the various amount of P2O5 are shown in Figure 4-2. 

 

It can be seen that with the amount of P2O5 increased from 2.0 to 4.0g, the intrinsic 

viscosity of ABPBI increased linearly. Normally, the polycondensation reactions of 

linear polymers are reversible. However, it is often assumed that, during the 

polymerisation process, there is no mutual interference of end groups in the same 

molecule especially when these groups attach to aromatic rings198. In other word, the 
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polycondensation reactions from single bi- or multi-functional monomers (especially 

aromatic rings contained) are assumed irreversible. Thus the polycondensation 

reaction of ABPBI is considered as irreversible. Therefore, the elimination of the 

by-product of water by P2O5 to form phosphoric acid drives the step-growth 

reactions forward resulting in the growth of polymer chains, and the incremental 

P2O5 enhances the eliminating process. The increase of the intrinsic viscosity of the 

polymer was slowed down when more than 4.0g of P2O5 was added. With excess 

P2O5 added, the viscosity of synthesis system increased greatly, leading to the 

difficulty of movement of growing polymer chains and then reducing the reaction 

probability between the functional groups, consequently affecting the continuous 

growth of polymer chains. 
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Figure 4-2 Intrinsic viscosity and molecular weights as a function of the amount of P2O5

4.1.2.2 Effect of the reaction temperature on polymer molecular weight 

The intrinsic viscosities and molecular weights of ABPBI polymers which were 

synthesised at various temperatures were given in Figure 4-3. 

 

From Figure 4-3, the polymer molecular weight increases with the elevated reaction 

temperatures, i.e. from 3700g/mol at 130oC to 18,010g/mol at 160oC, which is due to 
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the enhancement of step-growth polymerisation kinetics with the increased reaction 

temperatures. When the reaction temperature increased from 150 to 160oC, the 

polymer molecular weight increased slowly but the yield decreased. It was also 

noticed that the needle for nitrogen outflow was blocked by the volatile matters 

during polymerisation above 150oC which was probably due to the evaporation of 

solvent. Because the reaction temperature is close to the boiling point of solvent 

MSA (158oC), the evaporation of solvent MSA results in a great increase of polymer 

concentration, leading to a dramatic increase of viscosity thereby hindering the 

growing reaction of polymer chains. 
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Figure 4-3 Intrinsic viscosity and molecular weights as a function of reaction temperature 

4.1.2.3 Effect of the reaction time on polymer molecular weight 

The intrinsic viscosities and molecular weights of ABPBI synthesised at various 

reaction times were given in Figure 4-4. 

 

With the increase of reaction time from 20 to 100 minutes, the polymer molecular 

weight apparently increased from 11,640 to 19,710g/mol. When the reaction time 

was prolonged to 120 minutes, the molecular weight slightly increased to 

20,460g/mol. However, no factual increase of the molecular weight was observed 
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when the reaction time increased further to 180 minutes, which should be due to 

viscous solution resulting in the difficulty of the movement of polymer chains 

thereby hindering their further chain growth reactions. 
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Figure 4-4 Intrinsic viscosity and molecular weights as a function of reaction time 

4.1.2.4 Effect of stirring conditions on polymer molecular weight 

The effect of stirring conditions including stirring method (mechanical and magnetic) 

and stirring rate (from 100 to 400rpm) was investigated, and the results are shown in 

Figure 4-5. It can be seen that the molecular weight of ABPBI increased with the 

increase of the stirring rate and the mechanical stirring method showed more positive 

effect on the molecular weights of polymers. It was noticed that, during the synthesis 

process, the produced by-product of water forms bubbles. Stirring helps the 

formation of bubbles by cavitations and breaks existing bubbles, increasing 

interfacial area198. The increased interfacial area is in favour of the contact between 

functional groups, resulting in an acceleration of condensation reactions. Also, 

stirring helps the contact of P2O5 and water and the consequent elimination of water, 

driving the reactions forward.  
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Figure 4-5 Intrinsic viscosity and molecular weights as a function of string rate 

4.1.2.5 Effect of the monomer concentration on polymer molecular weight 

The various amounts of commercial DABA were employed to synthesise ABPBI. 

The results of intrinsic viscosities and molecular weights were shown in Figure 4-6. 

It can be seen that both the intrinsic viscosity and molecular weights grew with the 

increase of monomer concentration and then levelled off at higher concentration. The 

highest value of molecular weight of 22,660g/mol was obtained from 4.183g of 

DABA. 

 

According to the reaction kinetics equation 4-3, the relationship between the 

concentration of monomers and the molecular weight is in direct proportion, 

indicating that higher molecular weight can be achieved from the increased 

concentration of monomers. It can also explain how the higher molecular weight was 

achieved from the purified monomer DABA compared to the same amount of 

commercial DABA. The commercial and purified DABA were measured by DSC 

(shown in Figure 4-7). The improved melting point (223.58oC) compared to that of 

commercial DABA (219.29oC) resulted from higher crystallinity, indicating that the 

purifier monomer were obtained through the purification process which agrees with 

the results from literature28. 
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When purified DABA monomer was used, the higher molecular weight polymers 

were achieved whilst the solution also became more viscous. Due to the viscosity as 

a limiting factor, the side reactions (i.e. ring-forming reactions) are preferred to occur 

in the solution with high viscosity198, 199. Therefore, polycondensation must be 

carried out in bulk or with a concentration of solvent as low as possible to avoid the 

ring-forming reactions. However, considering the ring-forming reactions are usually 

happened in reversible polycondensation in bulk198, and the polycondensation of 

ABPBI polymer is considered as irreversible as discussed before, the side reactions 

can be ignored in the synthesis of ABPBI polymer. 
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Figure 4-6 Intrinsic viscosity and molecular weights as a function of amount of DABA 
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Figure 4-7 DSC curve of commercial and purified DABA  

4.1.2.6 Effect of the molecular weight on polymer mechanical properties 

The mechanical properties of dry ABPBI samples with different molecular weights 

were given in Figure 4-8. With the molecular weight increases from 10,200 to 

22,660g/mol, the mechanical strength increases from 69.9 to 160.2MPa and Young’s 

modulus from 1.0 to 3.2GPa, respectively. The increase of these values benefits by 

the contribution of long chains. However, the highest value of elongation (46.2%) is 

obtained from the sample with lowest molecular weight, which is probably due to the 

plasticisation of low molecular weight materials. When the molecular weight 

increases from 14,690g/mol, the elongation values do not change much. This might 

be explained as follows: the polymer chains do not entangle greatly due to their very 

rigid-rod molecular structures, resulting in a limited extension of polymer chains 

during the tensile test. 

 

Based on the above analysis, the optimised reaction conditions are considered as 

26.7mmol (4.184g) of monomer DABA synthesised in the reaction media of 40mL 

of MSA and 4~6.0g of P2O5 at 150oC for above 100 minutes with 300~400rpm of the 

stirring rate. In practice, ABPBI polymer synthesised at these conditions with the 
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molecular weight of above 18,000g/mol was successful to fabricate high quality 

membranes for usages. 
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Figure 4-8 Mechanical properties of ABPBI with various molecular weights 

4.1.3 Properties of ABPBI polymer 

4.1.3.1 Morphology of ABPBI polymer 

X-ray diffraction techniques are the non-destructive analytical techniques which 

reveal information about the crystallographic structure, chemical composition, and 

physical properties of materials and thin films. These are based on observing the 

scattered intensity of an X-ray beam hitting a sample as a function of incident and 

scattered angle, polarisation, and wavelength or energy. In these techniques, wide 

angle X-ray diffraction (WAXD) is often used to determine the crystalline structure 

of polymers.  

 

The XRD patterns of ABPBI in a wide range of 2θ degrees (5~75o) are illustrated in 

Figure 4-9. No sharp peak for crystalline nature but a broad peak centred at 

2θ≈11~26° is observed, indicating an amorphous structure of ABPBI.198 The 

amorphous nature of ABPBI polymer are also considered as the attribution of its 

unsymmetrical structural unit.200 
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Figure 4-9 XRD pattern of ABPBI 

4.1.3.2 Thermostability of ABPBI polymer 

The thermostability of ABPBI polymer was measured by DSC, TGA and FTIR 

spectra from various temperatures, respectively. 

 

The DSC result of ABPBI measured at the range of room temperature to 350oC is 

shown in Figure 4-10. A broad endothermic peak is observed before around 250oC in 

the first heating round, which is attributed to the evaporation of free and hydrogen 

bonded water. As ABPBI polymers tend to bond water through N-H···OH2. 

Therefore, water exists in the sample in two forms, i.e. free water and hydrogen 

bonded water. The elimination of water is confirmed by the disappearance of the 

peak instead of a horizontal line in the second heating round. It is noteworthy that the 

approximate peak after about 250oC in the first heating round might be due to the 

removal of residual low mass materials or oligomers, which is also confirmed to be 

evaporated before 350oC by the approximate horizontal line in the second heating 

round. 
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Figure 4-10 DSC curve of ABPBI 
 

The thermostability of ABPBI was also traced by an integrated TGA/DSC. From the 

thermogravimetric (TG) curve in Figure 4-11, three stages of weight loss which are 

related to three peaks in the derivative thermogravimetric (DTG) curve are observed. 

The first peak corresponding to about 6.0% of weight loss occurred before 400oC is 

attributed to the evaporation of water and low molar mass materials or oligomers.  

The final weight loss after 580oC is assigned to the decomposition of ABPBI 

backbones.117 The second stage with about 5.2% of weight loss was found at the 

range of 470~580oC which should include the decomposition of end groups in 

ABPBI backbones. However, the content of end groups in the ABPBI backbones 

should be less than 1.0% since the typical molecular weight of the used ABPBI 

sample is 18,000g/mol. Therefore, this stage of weight loss must involve in the 

decomposition and evaporation of low molar mass ABPBI molecules. 

 

The thermal behaviours corresponding to three stages of weight loss were also 

recorded by relative endothermic and exothermic peaks in the DSC curve (in Figure 

4-11). Normally, the rigid-rod polymers do not melt and do not possess a glass 

transition below the degradation temperature. However, an apparent glass transition 

is detected starting from around 425oC in the DSC curve which is overlapped by that 
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of degradation started from 460oC. This Tg value reflects the results of Tg=450oC 

measured by dynamic mechanical analyser (DMA) from the research literature.143 
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Figure 4-11 TGA/DSC curves of ABPBI 
 

The thermal stability of ABPBI is also confirmed by FTIR spectra recorded at 

various temperatures. Since the mostly typical characteristic of ABPBI is located at 

the fingerprint region, the FTIR spectra of ABPBI measured at various temperatures 

at the region 1700~600cm-1 are shown in Figure 4-12. 

 

With the temperature increased from room temperature to 450oC, the absorption 

peaks at 1622, 1541, 1281, 1128, 984, 922, 849, 810, 762 and 721cm-1, which belong 

to the typical characteristic of benzimidazole groups, remain unchanged - except for 

a minor decrease in intensity, indicating that the polymer has a good thermostability 

at this range of temperature. However, the peak at 1429cm-1 assigned to C-C 

stretching and the peaks at below 700cm-1 due to C-H and N-H wagging, decreases 

in intensity with the temperature increased from 300 to 400oC then remains 

unchanged between 400 to 450oC. This must be due to the elimination of low molar 

mass materials or oligomers resulting in the decrease of those peaks in intensity. 

88 



Chapter 4 RESULTS AND DISCUSSION: SYNTHESIS AND CHARACTERISATION OF POLYMERS 

It is worthy to mention that, the water content measured from elemental analysis and 

TGA is different, which is due to the different exposed time of samples at the 

atmosphere. The water or moisture absorbilities of ABPBI sample will be also 

discussed in the next chapter (i.e. section 5.1.2). 
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Figure 4-12 FTIR spectra of ABPBI at various temperatures (curves have been vertically offset 
for clarity) 
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4.2 Synthesis and Characterisation of PBI and copolymers 

4.2.1 Chemical structures of PBI and copolymers 

4.2.1.1 FTIR analysis of PBI polymer 

The chemical reactions involved in the polymerisation of PBI are as follows 
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Figure 4-13 Synthesis of PBI in (a): PPA; (b): MSA / P2O5  
 

It is noteworthy that the synthesis of PBI carried out in MSA medium has not been 

reported so far. Compared to the structure of ABPBI, there is a meta-substituted 

benzene ring in a PBI repeat unit. Moreover, two imidazole groups link together to a 

biphenyl in a PBI repeat unit. Therefore, the vibrations of these unique characteristic 

bands recorded by infra-red spectra are expected to occur. The IR spectra of 

monomer DAB, monomer IPA and PBI synthesis in MSA and PPA solution 

respectively, are shown in Figure 4-14. 

 

The curves of Figure 4-14a and Figure 4-14b represent the IR spectra of monomer 

DAB and monomer IPA, respectively; Figure 4-14c is the IR spectrum of PBI 

synthesis in MSA solution. The main band assignments of the benzimidazole group 

are similar to that of ABPBI. The absorbance centred at about 3602cm-1 is due to 

residual bonded water, thereby the band at 3145cm-1 assigned to hydrogen bonded 

N-H stretching becomes very broad and is partially overlapped by that of C-H 

stretching. The characteristic ring vibration due to conjugation between imidazole 

ring and benzene ring is observed at 1590cm-1.105 The enhanced absorbance at 

801cm-1 is due to the overlay from C-H out-of-plane bending of the three adjacent 
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hydrogens in the substituted benzene ring105. The peak shoulder at 1410cm-1 assigned 

to the stretching mode of C-C in biphenyl is observed. The observed typical 

characteristic of benzimidazole groups indicates PBI was successfully synthesised in 

MSA, which is also confirmed by the similar IR spectrum synthesised in PPA 

medium since PPA is widely used as the reaction medium for the synthesis of PBI as 

discussed before. 
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Figure 4-14 FTIR spectra of (a) DAB, (b) IPA, (c)PBI synthesised in MSA and (d) PBI 
synthesised in PPA. 

4.2.1.2 FTIR analysis of copolymers of ABPBI and PBI 

The copolymers of ABPBI and PBI with various ratios of monomers were 

synthesised in MSA medium (shown in Figure 4-15). The vibration frequency shifts 

in the FTIR spectra of these polymers resulted from the gradually increased content 

of benzene rings. Accordingly, the decreased content of benzimidazole rings from 

ABPBI via copolymers of ABPBI and PBI to PBI is expected to occur. 
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Figure 4-15 Synthesis of copolymers of ABPBI and PBI 
 

The band assignments for copolymers (mol ratio of monomers for ABPBI and PBI: 

3:1, 1:1 and 3:1, respectively) in the region 4000~2000cm-1 are the same as those for 

ABPBI and PBI. Therefore, more details will be discussed in the fingerprint region, 

i.e. 1650~600cm-1 (shown in Figure 4-16) (spectra of ABPBI and PBI are as shown 

in the references).  
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Figure 4-16 FTIR spectra of copolymers of ABPBI and PBI: (b) copolymer with 3:1 of mol ratio 
of DABA/DAB, (c) copolymer with 1:1 of mol ratio of DABA/DAB, (d) copolymer with 1:3 of 
mol ratio of DABA/DAB (a. ABPBI and e. PBI are as references). 
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The peak at 1610cm-1 is assigned to C=C/C=N stretching in PBI105, which is also 

observed in the spectra of copolymers but absent in that of ABPBI, indicating it must 

belong to C=C stretching in the meta-substituted benzene ring. As described above, 

the band of 1590cm-1 is due to the conjugation between benzene and imidazole rings 

in PBI. In fact, there are two different benzene rings connected to an imidazole ring, 

i.e. benzene in heterocyclic benzimidazole and meta-substituted benzene ring. 

Therefore, the nearby band of 1567cm-1 might be due to the conjugation between the 

substituted benzene and imidazole. In the spectrum of ABPBI, the band at 1541cm-1 

is assigned to benzimidazole in-plane ring vibration. Because of the conjugation of 

the substituted benzene in PBI and copolymers, this peak shifts with a reduction of 

the peak intensively from 1541 to 1527cm-1 from ABPBI via copolymers to PBI.  

 

The band at 1372cm-1 is attributed to C-H in-plane bending of three adjacent 

hydrogens in monomers196, therefore it appears in PBI and copolymers but is absent 

in ABPBI. It can be seen that C-H out-of-plane bending of three adjacent hydrogens 

in substituted benzene ring is located at 801cm-1, and increases in intensity with the 

increased content of substituted benzene rings. The peak at 1173cm-1 in PBI assigned 

to C-H in-plane bending105 is observed in copolymers but absent in ABPBI, thus it 

must belong to C-H in-plane bending of single hydrogen in substituted benzene. The 

bands at 1019 and 983cm-1 were assigned to benzene ring in-plane bending in the 

literatures105, 197. Due to the absence of 1019cm-1 in ABPBI, the band of 1019cm-1 

can be identified to substituted benzene in-plane bending whilst 983cm-1 the benzene 

in benzimidazole in-plane ring bending. The peak at 922cm-1 in ABPBI assigned to 

C-H out-of-plane bending of single hydrogen in benzene decreased intensively in 

copolymers and disappeared in PBI, whereas the new peaks at 954 and 903cm-1 rose 

in copolymers and PBI. Therefore, they must be due to C-H out-of-plane bending of 

single hydrogen in two different benzene rings. Musto et al.,105 Cordes197 and 

Asensio et al.153 also assigned 762 and 703cm-1 to heterocyclic ring vibration and 

688cm-1 to C-H out-of-plane bending of 3,4-disubstitutted biphenyl, respectively. 

The band assignments for ABPBI, PBI and their copolymers are summed up in Table 

4-2. 
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Table 4-2 Assignments of ABPBI infra-red spectra 
Wavenumbers (cm-1) 

ABPBI Copolymers PBI Assignment 

3415 3415 3415 Free non-hydrogen bonded N-H stretching 

3145 3145 3145 Self-associated or hydrogen bonded N-H 
stretching 

3065 3065 3065 C-H stretching 
1622 1624 1624 C=C/C=N stretching 

 1610 1610 C=C stretching in substituted benzene 
 1590 1590 Ring vibration of conjugation between 

imidazole and benzene 
 1567 1567 Ring vibration of conjugation between 

imidazole and benzene 
1541 1527 1527 In-plane ring vibration of benzimidazole 

1429 1441 1441 C-C stretching/Benzimidazole in-plane 
deformation 

 1410 1410 C-C stretching in biphenyl 
 1373 1373 In-pane C-H deformation of three hydrogens 

in substituted benzene 
1281 1281 1281 Breathing mode of the imidazole ring 

1230 1230 1230 In-pane C-H deformation of single hydrogen 
in benzimidazole 

 1173 1173 In-pane C-H deformation of single hydrogen 
in benzene 

1128 1136 1136 N-H in-plane bending 

1086 1101 1101 In-pane C-H deformation of two adjacent H in 
benzimidazole 

984 983 983 Benzene ring vibration 
 954 954 Out-of-plane C-H bending of single hydrogen 

in benzene 
922 922  Out-of-plane C-H bending of single hydrogen 

in benzimidazole 
 903 903 Out-of-plane C-H bending of single hydrogen 

in benzimidazole 
849 847 847 Out-of-plane C-H bending of two adjacent 

hydrogens in benzene 
810 801 801 Benzimidazole in-plane 

vibration/Out-of-plane C-H bending of three 
adjacent hydrogens in substituted benzene 

762 762 762 In-plane ring bending 
721 688 688 C-H out-of-plane bending 

 658 658 Out-of-plane C-H bending of benzimidazole 
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4.2.1.3 Elemental analysis of PBI 

The elemental analysis results of PBI synthesised in PPA and MSA/P2O5 

respectively, are given in Table 4-3. It can be seen that the found C/N molar ratios 

agree with the calculated molar ratio of C/N. The excessive amount of H should 

come from water. For example, in the sample synthesised from MSA, the amount of 

O is assumed to be 12.41% (=100%-67.47%-4.73%-15.39%). Thereby, H from water 

is 1.55% (=2×12.41%/16) and H in polymer equals to 3.18% (3.18%=4.73%-1.55%). 

Finally, the found molar ratios of C/N/H are 20.5/11.6/4.0, are close to the calculated 

ratios (20/12/4). 

 
Table 4-3 Element contents of PBI synthesised in PPA and MSA respectively 

Measured contents, wt% Element Calculated 

contents, wt% Synthesised in PPA Synthesised in MSA/P2O5

C 78.18 61.86% 67.47% 

H 3.52 4.42% 4.73% 

N 18.24 13.84% 15.39% 

P 0 Not found Not found 

S 0 Not found Not found 

C:H:N 

(mol/mol) 

20 : 12 : 4 20.9 : 17.9 : 4.0 20.5 : 17.2 : 4.0 

4.2.1.4 Elemental analysis of copolymers of ABPBI and PBI 

The elemental analysis results for the copolymers of ABPBI and PBI are listed in 

Table 4-4. From the chemical formula of the copolymer, ( ) ( )nm HNCHNC 42712420 , 

the molar ratios of C/N/H are calculated by 

 

)124/()42/()207(// mnmnmnHNC +++=                  4-4 
 
where, n and m was the numbers of the repeat unit of ABPBI and PBI respectively. 

 

In Table 4-4, the calculated molecular ratios of C/N/H are based on the assumption 

that all monomers were converted to the polymers. Amongst the measured results, 

the excessive hydrogen was attributed to the absorbed moisture as discussed above. 

Interestingly, the found amount of C was higher than that calculated in all samples. 
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In other words, the content of PBI fraction was higher than that of ABPBI fraction in 

those samples.  

 
Table 4-4 Element contents of copolymers synthesised in MSA 

Molar ratio of monomer DABA/DAB Elements 

3:1 1:1 1:3 

C, wt% 69.42 64.56 66.50 

N, wt% 19.34 15.78 15.72 

H, wt% 4.33 4.51 4.72 

P, wt% Not found Not found Not found 

S, wt% Not found Not found Not found 

Calculated C/N/H (mol/mol) 4.10/1.00/2.40 4.50/1.00/2.67 4.79/1.00/2.86

Found C/N/H (mol/mol) 4.19/1.00/3.14 4.77/1.00/4.00 4.93/1.00/4.21

ABPBI/PBI fraction (mol/mol) 2.35/1 0.36/1 0.32/1 

 

It is clear that copolymerisation is a much more complex process than polymerisation 

using a single monomer. For example, in a copolymerisation, using two monomers, 

the tendency of each type of monomer to add to the growing chain may be different. 

This can lead to a variation of copolymer composition during the reaction even when 

equimolar amounts of two types of monomer are used initially. This phenomenon is 

known as composition drift and is a common feature in copolymerisation reactions199. 

In this work, the molar ratio of PBI fraction versus ABPBI fraction in each 

copolymer sample was found higher than original molar ratio of monomer DAB 

versus DABA, indicating a higher reactivity of monomer DAB and IPA than that of 

DABA, or a higher reaction rate or faster reaction kinetic of PBI self-propagation 

than that of ABPBI. The faster reaction kinetic could introduce more PBI fractions at 

the reaction beginning period. With the reactions continued, the reaction mixtures 

become viscous, which could limit the movement of active centres in monomer and 

growing chain units thereby hinder the chain propagation reactions. As a result, with 

3:1, 1:1 and 1:3 of molar ratios of monomer DABA and DAB feeding, the molar 

ratios of ABPBI and PBI fractions in copolymers were 2.35/1, 0.36/1 and 0.32/1, 

respectively. 
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4.2.2 Properties of PBI and copolymers 

4.2.2.1 Morphology of PBI and copolymers 

The XRD patterns of PBI and copolymers of ABPBI and PBI in a range of 5~75o are 

shown in Figure 4-17.  
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Figure 4-17 XRD patterns of ABPBI, PBI and their copolymers 
 

The broad peaks centred at 2θ≈18~26° resulted from a convolution of amorphous 

and crystalline scattering. The amorphous nature is attributed to their unsymmetrical 

structural units200. Compared to that of PBI and copolymers, the appearance of a 

narrower peak at 2θ=26° in the XRD pattern of ABPBI results from a more ordered 

regularity of ABPBI backbones since no substituted benzene group exists in the 

ABPBI repeat unit. This narrower peak in ABPBI is also regarded as a characteristic 

of quasi-amorphous142 or semicrystalline201 structure. The peak with 2θ=26° is 

corresponding to a d spacing between two parallel benzimidazole chains of 3.3Ǻ, 

which was due to the stacking of ABPBI chains202. In general, the narrowing down 

peak at 18~26° from PBI via copolymers to ABPBI, indicates a tendency of 

crystallinity with the increasing of ABPBI repeat units. 
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4.2.2.2 Thermostability of PBI and copolymers 

The thermostabilities of PBI and copolymers were measured by DSC and TGA, 

respectively. 

 

The DSC curves of PBI and copolymers measured under 350oC are given in Figure 

4-18. Similar to the analysis of ABPBI, the elimination of free and hydrogen bonded 

water is responsible for the very broad endothermic peak that appeared under 250oC 

in each sample when initially heating up to 350oC. The absorbed water is also 

confirmed by the second heating round in the curve of PBI sample (in Figure 4-18a).  
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Figure 4-18 DSC curves of PBI and copolymers operated under 350oC 
 

The TG and DTG curves of PBI and copolymers are shown in Figure 4-19d1-a1. 

Similar to ABPBI, three apparent weight-loss stages during the whole 

thermogravimetric process are observed in each sample. In DTG curves, the first 

peak appeared before 350oC is due to the release of water and low mass residuals; the 

second small peak observed between 350~420oC in PBI (Figure 4-19d2), 

copolymer-0.32ABPBI (Figure 4-19c2), copolymer-0.36ABPBI (Figure 4-19b2) and 

between 350~480oC in copolymer-2.35ABPBI (Figure 4-19a2) is attributed to the 
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decomposition of end groups of polymer chains. The subsequently appeared peak 

owes to the decomposition of polymer backbones. Compared to PBI and 

copolymer-0.32ABPBI and copolymer-0.36ABPBI, the lagged peak due to the 

decomposition of polymer chains appeared in the DTG curve and lower weight loss 

appeared in the TG curve of the copolymer-2.35ABPBI sample indicates that the 

copolymer with dominated ABPBI fractions possesses a higher thermal stability. The 

relative low thermostability of PBI and copolymers with dominated PBI fractions 

result from the decomposition starting at the broken of C-C in biphenyl groups117. 
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Figure 4-19 TGA curves of PBI and copolymers of ABPBI and PBI 
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4.2.2.3 Viscosities of PBI and copolymers 

The viscosities of PBI and copolymers were measured by an Ubbelohde viscometer 

and the molecular weights of PBI were calculated through the Mark-Houwink 

equation. In Figure 4-20, the obtained PBI has an intrinsic viscosity of 0.222dl/g with 

molecular weight (Mw) of 24,330g/mol; the viscosities of copolymers slightly 

increase with the increased molar ratio of ABPBI/PBI fractions from 0.32/1 to 2.35/1. 

Compared to ABPBI composed of all benzimidazole groups, PBI and copolymers 

owns more flexible structures due to existed meta-substituted benzene ring groups 

and biphenyl groups, resulting in the apparent lower viscosity values of PBI and 

copolymers compared to 2.575dl/g of viscosity (20,460g/mol of Mw ) of ABPBI. 
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Figure 4-20 Intrinsic viscosities of PBI and copolymers 
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4.3 Synthesis of ABPBI/Polyhedral oligomeric silsequioxanes 

Composites (ABPBI/POSS) 

TriSilanolPhenyl POSS (SO-POSS) and OctaAmmonium POSS (AM-POSS) were 

employed in order to synthesise ABPBI/POSS composites in-situ, respectively. As 

shown in Figure 4-21a, SO-POSS possesses a hybrid inorganic-organic three 

dimensional structures which contain three hydroxide groups and seven phenyl 

groups linked with the silicon-oxygen open cage framework, containing the formula 

. AM-POSS contains an inorganic siloxane core linked by eight 

trialkylammonium chloride ( ) groups possessing the formula 

 (shown in Figure 4-21b). 

7123842 SiOHC

ClNHCHCHCH 3222−

812887224 SiONClHC

 

OH

OHO

O

O OH

OO

Si

Si Si

O

OO

O

Si

Si

Si

Si

a. TriSilanolPhenyl POSS-SO1458

O

OO

O

O O

O

Si

Si

Si

Si
O

O

OO

O

Si

Si

Si

Si

b. OctaAmmonium POSS-AM0285

NH3Cl

NH3Cl

NH3Cl

ClH3N

ClH3N

NH3Cl

ClH3N

ClH3N

 
Figure 4-21 Structures of a. SO-POSS and b. AM-POSS 

4.3.1 Synthesis of ABPBI/SO-POSS composites 

4.3.1.1 FTIR analysis of ABPBI/SO-POSS composite 

The structures of SO-POSS particle and 1, 3 and 5% SO-POSS hybrid ABPBI 

composite (ABPBI/1SO, ABPBI/3SO and ABPBI/5SO) were recorded by FTIR 

spectra, respectively. The FTIR spectra of SO-POSS powder and ABPBI/5SO 

composite are shown in Figure 4-22. In the FTIR spectrum of SO-POSS powder 

(Figure 4-22a), the broad peak centred at 3250cm-1 and the sharp peak at 887cm-1 are 

assigned to the stretching and bending modes of Si-OH; the range of 3100~3000cm-1 
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are related to stretching of C-H in a phenyl group whilst 696 and 746cm-1 to the C-H 

out-of-plane deformations; the region of 2000-1600cm-1 are typically characteristic 

of a benzene ring whilst the peak at 1595cm-1 is attributed to the vibration of C=C in 

a benzene ring linked with a POSS core; the peak at 1432cm-1 is due to the stretching 

of –Si-phenyl groups203; the typical characteristic of Si-O cage and network are 

located at the broad peak from 1160 to 1060cm-1. The in-plane and out-of-plane 

stretching of Si-O-Si groups are observed at 1028 and 640cm-1, respectively.185, 204 

 

In the FTIR spectrum of in-situ synthesised ABPBI/5SO composite, the typical 

characteristic of benzimidazole group appears indicating ABPBI was existed. The 

observed characteristic peaks of Si-O cage and network at 1140 and 1040cm-1 and 

the peak at 696cm-1 attributed to C-H out-of-plane bending of five adjacent 

hydrogens in benzene ring, indicate that SO-POSS cage structure is retained in the 

composite. The increased intensity of the peak at 1622cm-1 assigned to the C=C 

stretching is due to the overlay of phenyl groups from SO-POSS.  
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Figure 4-22 FTIR spectra of a. SO-POSS powder and b. ABPBI/5SO composite 
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It is assumed that a condensation reaction has happened between silanol (Si-OH) 

group in SO-POSS and amine group (NH2) in DABA monomer (shown in Figure 

4-23). Based on this assumption, an unreacted primary amine group in the end of 

ABPBI polymer chain and –Si-NH- groups are expected in the FTIR spetrium. In 

Figure 4-22b, the increased broad peak at 3460-3360cm-1 in intensity compared to 

that of ABPBI should be attributed to the vibration of hydrogen bonded NH2 groups. 

Also, the vibration of -Si-NH- group is observed at 1195cm-1 and the stretching of 

–NH in Si-NH- group is overlapped by the N-H stretching in benzimidazole groups 

at the range of 3200-3000cm-1.205 In addition, the peak at 1281cm-1 assigned to the 

breathing mode of imidazole intensively increases compared to that in ABPBI, which 

might be due to the effect from the grafted POSS. 
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Figure 4-23 Condensation reaction between SO-POSS and DABA monomer 
 

4.3.1.2 Thermogravimetric analysis of ABPBI/SO-POSS composite 

The thermostability of SO-POSS powder and ABPBI/SO-POSS composites were 

performed by the integrated TGA/DSC measurement. 

 

In Figure 4-24, SO-POSS powder displays two weight loss stages which are related 

to two different degradation mechanisms, which are shown in Figure 4-25. The first 

stage of weight loss (around 2.0% of weight loss) takes place at the range of 

190~250oC. Since SO-POSS can react with hydroxyl-terminated alkylsilicone resin 

by thermally induced SiOH-SiOH condensation179, 206, the Si-OH groups of 

SO-POSS can themselves cause condensation179. Therefore, it is due to the 

condensation reaction which occurred between two close Si-OH groups, resulting in 

1.93% of calculated weight loss which is approximate to 2.0% of found value. This 

condensation reaction is also recorded by a small endothermic peak appearing in the 

relative DSC curve (Figure 4-24c). The second stage of weight loss which started at 
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about 350oC and ended at about 730oC is due to the oxygenolysis of grafted phenyl 

groups and decomposition of POSS cores. Finally 47.0% of SiO2 remains in the 

crucible. The total 51.0% of found weight loss at second stage agrees well with the 

calculated value (52.81%). 
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Figure 4-24 TGA curves of SO-POSS powder 
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Figure 4-25 SO-POSS degradation mechanisms 
 

ABPBI/5SO-POSS was taken as an example to investigate the thermostability of 

ABPBI/SO-POSS composites. The TG, DTG and DSC curves are shown in Figure 

4-26 (pristine ABPBI as the reference). The weight loss before 200oC is due to the 

release of free and hydrogen bonded water; the weight loss at the range of 

200~480oC owns to the continuous elimination of hydrogen bonded water, low mass 
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residuals and initial degradation of SO-POSS; the apparent oxygenolysis of 

SO-POSS particles and end groups of ABPBI polymer occurred after about 480oC; 

the decomposition of polymer chains is observed after 595oC. 
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Figure 4-26 Thermostability of ABPBI/5SO-POSS composite 
 

Compared to ABPBI, the broader and greater peak before 200oC in the DTG curve of 

the composite indicates that the composite owns enhanced hygroscopicity. The 

greater weight loss occurred between 250~350oC which should be mainly attributed 

to the elimination of the low mass residuals indicates the addition of SO-POSS 

particles affects the polycondensation reaction resulting in more low mass polymers. 

The value of 2.5% which is mainly due to the elimination of end groups of ABPBI 

polymer is much lower than that of 5.2% in pristine ABPBI polymer. This is 

probably due to the condensation reaction happening between the silanol group in 

SO-POSS and end groups (NH2) in ABPBI polymer, resulting in the reduction of end 

groups therefore improving its thermostability. The increased thermostability of 

composite also is confirmed by both the delayed starting temperatures (495oC and 

595oC) of decomposition of end group and polymer chain respectively, and the 

slower decomposition rate that occurred in the decomposition course of polymer 

chains compared to that of ABPBI. It is noteworthy that a slight shift started at 350oC 
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in the DSC curve might indicate the glass transition of composite. Because of the 

impregnation of POSS particles, the distance between ABPBI polymer chains is 

enlarged, which is in favour of their free movements, resulting in the reduction of 

glass transition temperature compared to 420oC of pristine ABPBI. 

4.3.2 Synthesis of ABPBI/AM-POSS composites 

4.3.2.1 FTIR analysis of ABPBI/AM-POSS composite 

The FTIR spectra of AM-POSS and 5% AM-POSS hybrid ABPBI composite 

(ABPBI/5AM) is shown in Figure 4-27.  
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Figure 4-27 FTIR spectra of AM-POSS and ABPBI/AM-POSS composite 
 

In the spectrum of AM-POSS powder, the peaks located at the range of 

3400~2000cm-1 are the typical characteristic of AM-POSS salt structure 

( )−+−− ClNHCHOSi 332128 )()( 205; vibration of NH groups are located at 3431 and 

1603cm-1; C-C stretching is observed at 1414cm-1; CH2 in-plane and out-of-plane 

bending is seen at 1469 and 744cm-1 respectively, whilst Si-CH2- stretching is at 
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1225cm-1; the broad peak from 1200-1000cm-1 is the characteristic of AM-POSS 

cage and network; the in-plane bending of Si-O-Si is performed at 993cm-1.205, 207 

In the FTIR spectra of ABPBI/5AM composite, the peak at 1034cm-1 assigned to the 

POSS cage can be seen and the absorbance of moisture is found at around 3600cm-1, 

whilst other typical peaks of AM-POSS are overlapped by that of ABPBI polymer. 

In practice, the great hygroscopicity of ABPBI/5AM composite sample was also 

confirmed by the attached droplet when it was placed at ambient atmosphere for 

dozens of minutes. 

4.3.2.2 TGA/DSC of ABPBI/AM-POSS composite 

The thermal stability of AM-POSS and ABPBI/5AM-POSS composite membranes 

were investigated by TGA/DSC (Figure 4-28 and Figure 4-30).  
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Figure 4-28 TGA/DSC curves of AM-POSS 
 

In Figure 4-28, four apparent peaks appearing in the DTG curve are assigned to 

different mechanisms of weight loss. Obviously, the weight loss before 100oC is due 

to the release of absorbed moisture. The other three stages of weight loss are 

attributed to the degradation of AM-POSS particles. The degradation mechanisms 

are tentatively explained as shown in Figure 4-29. The first stage located at the range 
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of 250~362oC is assigned to the oxygenolysis of terminal C-C bonds at the end 

groups of grafted organic side chains, resulting in 33.5% of weight loss which is 

roughly close to 35.1% of the calculated results. The second stage of weight loss, 

which can be identified by a hump, appeared between 362 and 500oC in the relative 

DTG curve, is due to the continuous oxidation of left terminal C-C bonds of organic 

side chains. The final stage of weight loss resulted from the decomposition of 

AM-POSS cage. The result is that, 43.5% of SiO2 is found in the crucible. 23.0% of 

found weight loss covering the second and third stage is roughly in accord with the 

calculated value (24.6%). It is worth mentioning that the error between the calculated 

and found value should be due to the unstable oxidation intermediate products. In 

other words, the oxidations of terminal C-C bonds will product aldehyde which can 

be further oxidised to carboxylic acid. The calculated value is based on aldehydes 

regarded as the oxidation products, therefore higher than the found results. 
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Figure 4-29 Degradation mechanisms of AM-POSS 
 

Figure 4-30 traces the thermogravimetric course of ABPBI/5AM-POSS composite. 

The rapid evaporation of surface water is confirmed by the peak which appeared 

before 100oC in the DTG curve. Also this big peak results in the overlap of the 

subsequently appearing broad peak attributed to the continue release of hydrogen 

bonded water. A rapid weight loss occurred approximately between 250 and 350oC, 

which is identified by a dramatic step appearing at that temperature range. This 

should be mainly attributed to the degradation of AM-POSS. The weight loss after 

500oC185 is due to the decomposition of ABPBI polymer and OA-POSS cores. 

 

Compared to ABPBI, ABPBI/AM-POSS composite owns a stronger hygroscopicity 

due to the introduction of hydrophilic AM-POSS particles. In practice, droplets 
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condensed on the surface of ABPBI/5AM-POSS composite were observed when 

exposed at the atmosphere for hours. It is also confirmed by the endothermic peak 

appeared in DTG curve before 100oC. An apparent glass transition started from 

325oC is observed in the DSC curve of AM-POSS composite. The lower Tg (325oC) 

than that of ABPBI is attributed to the embedded AM-POSS between polymer chains, 

enlarging the these chain gaps thereby reducing Tg. The reduction of Tg can also be 

explained by the plasticisation since the POSS particles are distributed between 

polymer chains.  
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Figure 4-30 TGA/DTG/DSC curves of ABPBI and ABPBI/5%OA-POSS membranes 
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Chapter 5 RESULTS AND DISCUSSION: 

FABRICATION AND CHARACTERISATION 

OF ABPBI AND ABPBI/POSS 

COMPOSITE MEMBRANES 

5.1 Phosphoric Acid and Water Absorbility of ABPBI and its 

Composite Membranes 

5.1.1 Comparison of H3PO4 absorbility of ABPBI and ABPBI/POSS 
composite membranes 

In order to determine the phosphoric acid (PA) absorbility, H3PO4 uptakes of ABPBI 

and ABPBI/POSS composite membranes were measured from the weights before 

and after being doped in phosphoric acid solution with various concentrations. The 

results are given in Figure 5-1 and Figure 5-3, for ABPBI and ABPBI/POSS 

composite membranes, respectively. 

 

As shown in Figure 5-1, H3PO4 uptake of ABPBI increases from 42.7% to 90.6% 

with the increase of H3PO4 concentrations from 2 to 12M. When doped in H3PO4 

with higher concentration (i.e. 14M), the ABPBI membrane started to dissolve in the 

solvent. The H3PO4 absorption of ABPBI membrane is mainly due to the hydrogen 

bonding or ionic reaction between alkaline imidazole group and H3PO4 molecule. 

Theoretically, the degree of saturation of acid absorption or the maximum degree of 

protonation is 1.0, in another word, one imidazole groups can react with one H3PO4 

molecule. Thus, the excessive H3PO4 should exist in the free form when H3PO4 

uptake is over 84.5% which equal to 1.0 of doping level.130 The free H3PO4 was 

confirmed by FTIR spectra from literatures130 and also in this work which will be 

discussed in the later section. The dissolution of ABPBI membrane in high 

concentrated H3PO4 solution was also reported by other researchers28, 127. In fact, 

high-concentration H3PO4 tends to become polyphosphoric acid (PPA) which is used 
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widely as a solvent for ABPBI polymer. However, the values of H3PO4 uptake were 

lower than that reported. For example, Asensio at el.127 reported that around 3.0 

H3PO4 molecules were absorbed by per repeat unit of ABPBI when the membrane 

was doped in 10M PA, whilst, in this research about 1.0 H3PO4 molecule was found 

probably due to different rinsing procedure were used. The excessive free H3PO4 

should and can be rinsed out by rinsing with a plenty of water. In fact, the excessive 

free H3PO4 was believed to be the main reason leading to H3PO4 leaching during a 

PEMFC operation11. In addition, the thickness of a membrane might be another 

factor. The membrane with 20µm of thickness was used by Asensio et al.127, whilst 

the thickness in the range of 70 to 190µm was employed in this work. 
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Figure 5-1 Comparison of H3PO4 uptake of ABPBI and ABPBI/AM 

 

H3PO4 uptakes for ABPBI/AM-POSS composite membranes are also shown in 

Figure 5-1. With the increase of H3PO4 concentration from 2M to 12M, H3PO4 

uptake of ABPBI/1AM increased from 66.7 to 95.8%. Similar level of the increase in 

H3PO4 uptake for ABPBI/5AM was observed. The most significant increase in 

H3PO4 uptake was obtained for ABPBI/3AM composite membrane, in which, the 

maximum value of 241% was achieved in 12M H3PO4. 
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Compared to that of ABPBI, the increased H3PO4 uptake for composite membranes 

should be mainly contributed to the embedding of AM-POSS particles in the 

polymer matrix. Figure 5-2 illustrates the H3PO4 absorption in an ABPBI/AM 

composite membrane, in which, four different forms (form A~D) of H3PO4 

absorption are proposed. Imidazole groups in polymer backbones (form A) and 

amino groups in AM-POSS (form B) can be protonated by H3PO4 and hydrophilic 

POSS core can absorb H3PO4 via hydrogen bond (form C), resulting in the increase 

of H3PO4 uptake. Additionally, one free H3PO4 molecule can be hydrogen bonded by 

another H3PO4 molecule (form D) when more free H3PO4 molecules exist in. Also, 

the dispersed POSS particles enlarge the distance of polymer chains thereby 

providing more space for H3PO4 molecules diffusing through the polymer chains and 

then reacting with functional groups in polymer chains and POSS particles.  
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Figure 5-2 Models proposed for H3PO4 absorption in an ABPBI/AM composite membrane 
 

The slightly increased H3PO4 uptake from 8M~12M H3PO4 doped ABPBI/1AM 

sample (91.7% at 8M, 93.0% at 10M and 95.8% at 12M PA) might be due to a 

degree of saturation of H3PO4 absorption reached. The significant increased H3PO4 

uptake in ABPBI/3AM sample indicates a fine dispersion of AM-POSS in the 

polymer matrix leading to the maximum surface area of POSS therefore resulting in 
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the maximum acid absorption. Compared to that of ABPBI/3AM, however, the value 

of H3PO4 uptake of ABPBI/5AM was lower; additionally, it decreased with the 

H3PO4 concentration increasing from 6M to 12M. The reduction of H3PO4 uptake of 

ABPBI/5AM probably is due to the agglomeration of POSS, which results in the 

reduction of the surface area and the hindrance of interaction between the POSS and 

H3PO4 molecules.  
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Figure 5-3 Comparison of H3PO4 uptake of ABPBI and ABPBI/SO-POSS 

 

The values of H3PO4 uptake for ABPBI/SO composite samples are given in Figure 

5-3. With the increase of H3PO4 concentration from 4M to 10M, H3PO4 uptake of 

ABPBI/1SO and ABPBI/3SO increases from 53.1 and 59.3 to 87.2% and 102.6%, 

respectively. The increased H3PO4 uptake from ABPBI/1SO and ABPBI/3SO must 

be due to hydrogen bonding between SO-POSS cores and H3PO4 molecules resulting 

in more H3PO4 molecules being absorbed and the reduced values of H3PO4 uptake 

from ABPBI/5SO should result from the agglomeration of POSS particles which is 

the same as that of ABPBI/5AM. It is also noticed that, H3PO4 uptake of ABPBI/SO, 

in general, was lower than that of ABPBI/AM, which could be explained by the 

different chemical structures of two kinds of POSS. Since there are eight amino 

groups linked with a POSS core in AM-POSS particle but seven phenyl groups 
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linked with a POSS core in a SO-POSS particle, a H3PO4 molecule can be linked 

with an amino group of AM-POSS via ionic bonds but not with the phenyl group of 

SO-POSS, resulting in the great difference of H3PO4 uptake. Compared to that of 

pristine ABPBI and ABPBI/5AM composite doped in high-concentration H3PO4 

solution, the largely reduced H3PO4 uptake of ABPBI/5SO in the same condition was 

mainly contributed to the agglomeration of SO-POSS particles.  

5.1.2 Investigation of water absorbility of undoped membranes 

The results of water absorption of undoped membranes including Nafion 117 

membrane are given in Figure 5-4. 

 

As shown in Figure 5-4, the water uptake of a saturated ABPBI (31.6%) decreased 

with the exposure time in the air and reached to 23.2% at the equilibrium condition; 

whilst the dry ABPBI membrane was found to absorb the moisture from air, which 

reaches to 15.4% (1.0 mole ratio, or 1.0mol water in per repeat unit) in 50 hours and 

18.08% (1.2 mole ratio) in 7 days at the ambient atmosphere. As a reference, the 

effect of the moisture on the water absorption of Nafion 117 was also investigated. 

The results showed that the water absorption of the saturated Nafion 117 membrane 

(30.3%) reduced to 7.1% at the ambient atmosphere in 120 minutes and no moisture 

absorption was observed for a dry Nafion membrane in this period. 

 

The better water retaining ability and moisture absorbility for the ABPBI membrane 

are attributed to hydrogen bonding formed between hydrophilic imidazole groups in 

polymer chains and water molecules. Although the hydrogen bonding form could 

occur between the hydrophilic sulphonic acid group and water molecule, the 

dominated hydrophobic PTFE main chains (~87mol%) expels the water molecules 

from the membrane resulting in the rapid evaporation of water and hindering the 

moisture absorbing208, 209. 

 

It can also be seen that the water absorbility would be hugely affected by the 

humidity. In this work, the water uptake was evaluated in two conditions: a saturated 

and ambient atmosphere (i.e. 100%R.H. and 45~55%R.H.) respectively. Table 5-1 

lists the water uptake values of no H3PO4 doped ABPBI, ABPBI/POSS composites 

and Nafion membranes at those conditions. 
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Figure 5-4 Water and moisture absorbilities of ABPBI and Nafion 117 membranes 
 
Table 5-1 Water uptake of ABPBI, ABPBI/POSS and Nafion 117 membranes 

Water uptake, % 
Membrane 

Saturated Ambient atmosphere 

ABPBI 31.6 ± 1.6 23.2 ± 1.1 

ABPBI/1SO 37.4 ± 1.9 28.9 ± 1.4 

ABPBI/3SO 43.9 ± 2.2 29.3 ± 1.5 

ABPBI/5SO 36.4 ± 1.8 31.2 ± 1.5 

ABPBI/1AM 61.2 ± 3.0 32.0 ± 1.6 

ABPBI/3AM 106.2 ± 5.3 32.3 ± 1.6 

ABPBI/5AM 90.8 ± 4.5 33.1 ± 1.9 

Nafion 117 30.3 ± 1.5 7.1 ± 0.3 

 

As seen in Table 5-1, compared to that of the pristine ABPBI, the increased water 

uptake of ABPBI/SO (4.8~12.3% at saturated and 5.7~8.0% at ambient atmosphere) 

should be contributed to the embedded POSS particles, as a hydrophilic SO-POSS 

cage core has three hydrophilic silanol groups and seven hydrophobic phenyl groups, 

although some of the silanol groups could be consumed by reacting with the 

monomer DABA during the synthesis in situ (which was confirmed by the FTIR 

analysis and discussed in the late section). Additionally, the water can also be 
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absorbed by hydrogen bonding through POSS core and water molecules 

(Si-O(Si)···H-O-H).  

 

Accordingly, the significant increased value from ABPBI/AM (29.6~74.6% at 

saturated and 8.8~9.1% at ambient atmosphere) should be mainly attributed to the 

hydrophilic amino groups. The amino groups in AM-POSS enhance the water 

absorbility greatly through the hydrogen bonding between the amino groups and 

water molecules. In addition, the highest value appeared in 3% of POSS hybrid 

composite in either ABPBI/SO or ABPBI/AM implies that a uniform dispersion was 

achieved therefore resulting in greater surface area which provided more interaction 

between the POSS particles and H3PO4 molecules. 

5.1.3 Comparison of water absorbility of H3PO4 doped membranes 

The water uptake of H3PO4 doped ABPBI membranes is given in Table 5-2. It can be 

seen that the water absorbility of H3PO4 doped ABPBI membrane was enhanced with 

the increased H3PO4 uptakes either at a saturated condition or ambient atmosphere. 

This is due to the hydrogen bonds formed between H3PO4 and water molecules i.e. 

(HO)2OP–OH···OH2 or (HO)3P=O···H-O-H. However, the water uptake of lower 

percentage H3PO4 doped ABPBI membranes at ambient atmosphere was lower than 

that of undoped one (23.2% in Table 5-1) and the water uptake of ABPBI-36PA and 

ABPBI-53PA samples at saturated condition is lower that that of undoped at 

saturated condition (31.6% in Table 5-1). This implies a different mechanism of 

water absorption between polymer, H3PO4 and water, which will be discussed in the 

analysis of the followed moisture absorption. 

 
Table 5-2 Water uptake of H3PO4 doped ABPBI membrane 

Water uptake, % 
ABPBI membrane 

Saturated Ambient atmosphere 

ABPBI-36PA 17.2±1.7 9.4±0.2 

ABPBI-53PA 24.2±2.4 12.6±0.3 

ABPBI-60PA 34.7±3.5 13.7±0.4 

ABPBI-79PA 40.1±4.0 14.1±0.4 

ABPBI-84PA 53.0±5.3 15.0±0.5 
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The moisture absorptions of H3PO4 doped ABPBI membrane are given in Table 5-3. 

It can be seen that, when the H3PO4 doping level increased from 0.44 to 0.75, the 

moisture absorbance decreased but the sum of H3PO4 and water absorption to per 

imidazole group or repeat unit is closed to 1.0 mole ratio. Theoretically, one repeat 

unit or imidazole group can absorb either one H3PO4 or one water molecule. 

Therefore, the water molecules were hydrogen bonded with the spare imidazole 

groups in ABPBI polymer chains when the H3PO4 doping level is less than 0.75. The 

moisture absorption increased with the rising of the H3PO4 doping level, which might 

be mainly due to the absorption by H3PO4 molecules via hydrogen bonding since the 

imidazole groups are fully occupied by H3PO4 via hydrogen bonding. Based on the 

assumption of the water molecules hydrogen bonded to H3PO4 molecules when the 

imidazole groups are fully occupied, it can be roughly calculated that one H3PO4 

molecule could absorb up to one water molecule at ambient atmosphere. For example, 

in the sample of ABPBI-84PA, 84.0wt% of H3PO4 uptake equals to 1 mole ratio of 

H3PO4 doping level or one H3PO4 molecule bonds with one imidazole group; the 

water absorption of the membrane of 15.0wt%, or 1 mole ratio is mainly attributed to 

one H3PO4 molecule absorbing one water molecule. The models shown in Figure 5-5 

illustrate the absorption of water molecules with various forms. 

 
Table 5-3 Moisture absorbility of dry H3PO4 doped ABPBI membrane 

PA doped ABPBI Moisture absorption PA + moisture 
 PA mole ratio* wt% mole ratio mole ratio 

ABPBI-37PA 0.44 8.85 0.57 1.01 

ABPBI-47PA 0.56 7.29 0.47 1.03 

ABPBI-55PA 0.65 6.52 0.42 1.07 

ABPBI-63PA 0.75 5.12 0.33 1.08 

ABPBI-73PA 0.86 5.90 0.38 1.24 

ABPBI-77PA 0.91 7.60 0.49 1.38 

ABPBI-89PA 1.05 8.90 0.57 1.62 

*mole ratio: number of H3PO4 or water molecule in per repeat unit 
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Figure 5-5 Models proposed for the water absorption in the pristine and H3PO4 doped ABPBI 
membranes at ambient atmosphere 
 

The water uptakes of ABPBI/AM and ABPBI/SO composite membranes are given in 

Table 5-4 and Table 5-5, respectively. With the increasing of H3PO4 uptake, both the 

water uptakes at saturated and ambient atmosphere increased.  

 

Compared to that of undoped ABPBI/POSS composite with the same amount of 

POSS addition (in Table 5-1) at ambient atmosphere, the values of H3PO4 doped 

ABPBI/1AM, ABPBI/5AM, ABPBI/1SO and ABPBI/5SO composite samples at the 

same conditions were lower, which is the same as that of H3PO4 doped and undoped 

ABPBI therefore owes the same explanation. The significant increase of water 

uptake is found in the sample of H3PO4 doped ABPBI/3AM and ABPBI/3SO-102PA 

either at saturated or ambient atmosphere, indicating the dominant contribution of 

water uptake must result from the embedded POSS particles. In other words, the 

surface areas of POSS achieved from 3% addition of POSS particles must be larger 

than those with 1 or 5% addition, due to the fine dispersion of POSS in polymers 

which resulted in a great enhancement of water absorbility. Figure 5-6 illustrates the 

water absorption in various additions of POSS embedded composites, of which, the 

highest surface areas for ABPBI/3% POSS led to the maximum water absorption. 
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ABPBI/1% POSS ABPBI/3% POSS ABPBI/5% POSS

POSS particle

H2O molecule

Hydrogen bonding between POSS and H2O when undoped
or POSS-H3PO4-H2O when PA doped  

Figure 5-6 Models of water absorption for ABPBI/POSS composite membranes 
 
Table 5-4 Water uptake of H3PO4 doped ABPBI/AM-POSS membranes 

Water uptake, % ABPBI/AM-POSS 

Membrane Saturated Ambient atmosphere 

ABPBI/1AM   

ABPBI/1AM-65PA 43.0±2.0 16.0±0.3 

ABPBI/1AM-71PA 54.0±2.5 16.6±0.3 

ABPBI/1AM-77PA 56.7±3.0 17.3±0.4 

ABPBI/1AM-92PA 73.4±3.5 18.6±0.4 

ABPBI/1AM-96PA 88.2±5.0 19.0±0.4 

ABPBI/3AM   

ABPBI/3AM-88PA 108.0±5.5 36.1±0.7 

ABPBI/3AM-117PA 114.9±5.5 41.3±0.8 

ABPBI/3AM-153PA 133.2±6.5 47.8±1.0 

ABPBI/3AM-194PA 145.4±7.0 53.3±1.1 

ABPBI/3AM-241PA 153.6±7.5 58.2±1.2 

ABPBI/5AM   

ABPBI/5AM-33PA 32.4±2.0 14.8±0.3 

ABPBI/5AM-58PA 44.9±3.0 16.5±0.3 

ABPBI/5AM-76PA 47.0±3.0 17.4±0.3 

ABPBI/5AM-94PA 51.2±3.0 18.6±0.4 

ABPBI/5AM-106PA 60.3±3.0 20.9±0.4 
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Table 5-5 Water uptake of H3PO4 doped ABPBI/SO-POSS membranes 
Water uptake, % ABPBI/SO-POSS 

Membrane Saturated Ambient atmosphere 

ABPBI/1SO   

ABPBI/1SO-33PA 47.2±2.5 15.2±0.3 

ABPBI/1SO-71PA 55.4±3.0 16.3±0.3 

ABPBI/3SO   

ABPBI/3SO-47PA 44.7±2.5 20.6±0.4 

ABPBI/3SO-58PA 55.0±3.0 21.9±0.4 

ABPBI/3SO-88PA 87.6±4.5 30.5±0.6 

ABPBI/3SO-102PA 110.5±5.5 39.2±0.8 

ABPBI/5SO   

ABPBI/5SO-43PA 28.5±1.5 13.5±0.3 

ABPBI/5SO-55PA 34.3±2.0 15.7±0.3 

5.2 Mechanical Properties of ABPBI and its Composite 

Membranes 

5.2.1 Effect of phosphoric acid and water on the mechanical 
properties of ABPBI membrane 

For ABPBI membranes with molecular weights of about 18,000g/mol, the 

mechanical properties of ABPBI membranes at dry and saturated conditions as a 

function of H3PO4 uptake are shown in Figure 5-7 and Figure 5-8, respectively. In 

Figure 5-7, for the pristine (undoped) ABPBI membrane, the tensile strength is 

135MPa, whilst it jumps to 173MPa for the 53% H3PO4 doped ABPBI membrane. 

With H3PO4 uptake continuously increasing, the tensile strength decreased. A similar 

variation tendency with the elevated H3PO4 uptake is observed in Young’s modulus 

and the maximum value of 7.0GPa was obtained from 53% H3PO4 doped ABPBI. In 

contrast, the elongation at break is found to decrease firstly then increase with the 

elevated H3PO4 uptake. 
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Figure 5-7 Mechanical properties of dry H3PO4 doped ABPBI membrane 
 

Generally, the mechanical strength of polymer membranes results from attraction 

forces between polymer molecules, which are dipole-dipole interaction (including 

hydrogen bonding), induction forces and dispersion between non-polar molecules. It 

may also result from ionic bonding and ion-dipole interactions with polymers 

containing ionic groups210. For pure ABPBI membrane, the hydrogen bonding 

between –N= and –NH- groups is the dominant force that determines its mechanical 

strength. When H3PO4 is introduced, the intermolecular forces between ABPBI 

polymer chains could be weakened due to hydrogen bonds formed between –N= and 

H3PO4 molecules. The doped phosphoric acid has two types of effect on the 

mechanical strength of the membranes: it improves the mechanical strength through 

hydrogen bonding when acid doping level is low (i.e. less than 1). Additionally, 

when the acid doping level is higher, the doped H3PO4 the distance of polymer 

backbones which in turn would reduce intermolecular forces of polymer chains and 

consequently deteriorates the mechanical strength of the membranes210. Similar 

results from H3PO4 doped PBI membranes were reported by He at al.211 and Litt et 

al.111 When the doping level was less than 1, one phosphoric acid could link with two 

different benzimidazole groups (or protonate benzimidazole rings) through ionic 

bonds to form cross-linking-like networks which can be seen in Figure 5-26 in the 
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late section. The formation of networks might be the dominant factor of resulting in 

the increase of mechanical strength and the decrease of elongation. The ionic bonds 

especially HPO4
2- were confirmed by FTIR spectra which will be discussed in the 

later section. With more H3PO4 absorbed, the ionic bonding form of one H3PO4 

molecule bonded with two imidazole groups could be replaced by that of one H3PO4 

molecule bonded with one imidazole group, resulting in the degeneration of 

cross-linking-like networks, therefore, decreased mechanical strength. In addition, 

the absorbed H3PO4 can act as plasticiser resulting in the elongation increasing in the 

ABPBI membrane at high H3PO4 uptake. 
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Figure 5-8 Mechanical properties of saturated H3PO4 doped ABPBI membranes 
 

The mechanical properties of H3PO4 doped ABPBI membranes were also measured 

at water saturated condition. As shown in Figure 5-8, the mechanical strength and 

Young’s modulus decrease with the increased H3PO4 uptake, whilst the elongation 

increases. This is due to the absorbed water and H3PO4 molecules, on one hand, 

resulting in the volume swelling therefore increases the distance of separation for 

ABPBI backbones, which would reduce intermolecular forces and deteriorate 

mechanical strength; on the other hand, plasticised polymers leading to increased 

elongation. 
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Similar to H3PO4 doped ABPBI, the increased mechanical strength with low H3PO4 

uptake is also found in H3PO4 doped ABPBI/POSS composite membranes. For 

example, in Figure 5-9, the tensile strength of ABPBI/1SO-70PA at the dry condition 

is 242MPa, whilst it is 165MPa from undoped ABPBI/1SO and 144MPa from 

ABPBI/1SO-87PA respectively. The increased mechanical strength should be due to 

the cross-linking-like network formed by phosphoric acid with low doping levels. 

Correspondingly, the decreased values at the saturated condition should result from 

the increased distance of the separation of polymer chains due to the increased 

absorbance of water compared to that of undoped ABPBI/1SO. 
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Figure 5-9 Mechanical strength of H3PO4 doped ABPBI/1SO at dry and saturated condition 

5.2.2 Effect of POSS particles on the mechanical properties of 
ABPBI/POSS composite membrane 

The mechanical properties of undoped ABPBI/AM-POSS and ABPBI/SO-POSS 

composite membranes are shown in Figure 5-10 and Figure 5-11, respectively. 

 

It can be seen that, in Figure 5-10, both the tensile strength and Young’s modulus are 

increased with the addition of AM-POSS. Compared to the slight increase of that 

from ABPBI/1AM and ABPBI/5AM, significant increases i.e. around 92% of the 
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increase of tensile strength (258MPa) and 62% of the increase of Young’s modulus 

(4.6GPa), respectively, are observed from dry ABPBI/3AM composite membrane. 

 

The modulus of a composite can be expressed by the “Rule of Mixture”199 as 

following 

ffmmc VEVEE +=                               5-1 

where E is the modulus and V is the volume fraction (Vm + Vf = 1), c, m and f 

represents composite, matrix (polymer) and filler (POSS), respectively.  

 

A model of the geometric configuration of POSS particles dispersed in ABPBI 

polymer matrix used in the present analysis is also proposed in Figure 5-12. For a 1% 

addition of POSS, the negligible volume fraction of POSS addition could not result 

in an obvious contribution to the composite modulus although the modulus of 

inorganic POSS particle is significantly higher than that of polymer ( ). 

Therefore, the increased modulus could be mainly due to the dipole-dipole 

interaction and induction forces between POSS particles and polymer chains. A 3% 

addition of POSS could enhance the composite modulus in two ways, i.e. on the one 

hand, a uniformly dispersed POSS could result in the increased volume fraction of 

fillers thereby enhancing the composite modulus; on the other hand, the stress could 

transport through the evenly and continuously distributed polymer-filler bridged 

structures resulting in the significant increase of modulus. However, a dramatic 

decrease of modulus was observed from ABPBI/5AM, which should be due to the 

agglomeration of POSS particles leading to the stress concentration and the enlarged 

distance of separation of polymer chains. Accordingly, this can also explain the 

changed rule for tensile stress of composites. 

mf EE 〉〉

 

While immersed in water, on one hand, the absorbed water swelled the membranes. 

Based on the equation 5-1, the increased value of Vf is from the swelling of water, 

resulting in the decrease of composite modules and tensile strength. On the other 

hand, absorbed water molecules separated polymer chains resulting in the reduction 

of intermolecular reactions, meanwhile acting as plasticisers leading to the increase 

of elongation.  
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Figure 5-10 Mechanical properties of undoped ABPBI/AM-POSS composite membranes 
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Figure 5-11 Mechanical properties of undoped ABPBI/SO-POSS composite membranes 
 

125 



Chapter 5 RESULTS AND DISCUSSION: FABRICATION AND CHARACTERISATION OF ABPBI AND ABPBI/POSS 

Polymer chain
POSS particle

ABPBI/1% POSS ABPBI/3% POSS ABPBI/5% POSS  
Figure 5-12 Schematic drawing showing a polymer matrix bridged by POSS particles 
 

The quite similar variation tendency of mechanical properties with the various 

contents of SO-POSS is observed in ABPBI/SO-POSS composite membranes, 

thereby owing to the same explanations as discussed above. It is noteworthy that the 

quite approximate values of tensile strength in ABPBI/3SO samples (260MPa) to 

that of ABPBI/3AM (258MPa) indicate that the significantly increased mechanical 

strength should be mainly caused by the homogenous dispersion of POSS particles 

rather than the hydrogen bonding forms between POSS particles and polymer chains 

since the phenyl groups in SO-POSS could hinder these hydrogen bonding. 

5.3 Morphologies of ABPBI and Composite Membranes 

5.3.1 Effect of the casting procedure on the morphologies of 
ABPBI membranes 

The removal of residuals (MSA, H3PO4 or water) is important for the calculation of 

water uptake and acid uptake (or doping level) and the evaluation of proton 

conductivities based on these parameters. From the relevant literature, there are some 

different conditions of evaporating solvent or water used for membrane casting, e.g. 

drying at room temperature under reduced pressure28, heating at high temperature up 

to 200oC141, etc. As described in chapter 3, ABPBI and its composite membranes 

were cast using Petri dishes in this work. The thicknesses of the membranes were 

varied by controlling the concentration of polymer solutions. The majority of the 

solvent was evaporated in a wide temperature range (i.e. from synthesis (150oC) or 

dissolving temperature (130oC) to 220oC). Phosphoric acid and the residual solvent 

were eliminated by neutralisation with NaOH. Subsequently dryness was carried out 

in an oven. As the boiling point of solvent MSA is 167oC, the evaporating 

temperature was set from 180~220oC with direct heating or gradual heating up to set 
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temperature. The morphologies of ABPBI membranes prepared by different heating 

conditions were performed by SEM and shown in Figure 5-13.  

 

(A) (B) 

 

(C) (D) 

Figure 5-13 SEM image of ABPBI membrane under the heating conditions of evaporating 
solvent: A. 180oC for 24 hours, B. 200oC for 24 hours, C. 220oC for 24 hours, D. the temperature 
varied from 150~220oC with 10oC intervals per hour then hold at 220oC for over 10 hours 
 

It was found that the membrane qualities were greatly affected by the heating rate 

when evaporating solvent. As shown in Figure 5-13a, the island-like structures were 

observed when the membrane was heated at 180oC for 24 hours. The island-like 

structures shrink at elevated evaporating temperatures i.e. 200oC (as shown in Figure 

5-13b) and become unclear or even disappear at 220oC instead of the appearance of 

pinholes (as shown in Figure 5-13c). By adjusting the heating rate, i.e. increasing the 

temperature from 150 to 220oC with 10oC intervals per hour then holding at 220oC 

over 10 hours, a uniform membrane can be achieved (as shown in Figure 5-13d). The 

island-like structure is likely to be due to the slow and incomplete evaporation of 

solvent, resulting in the uneven distribution of solvents (acids) in the polymer matrix, 

whilst the pinhole defects should result from the overquick evaporation of solvent 

from the viscous mixtures.  
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Figure 5-14 XRD pattern of ABPBI membrane 
 

The H3PO4 doped and undoped ABPBI membranes cast from MSA solution were 

measured by XRD. As shown in Figure 5-14, a sharp peak at 2θ=26o was observed in 

the undoped sample, whilst it was found reduced in intensity and broadened when 

doped from H3PO4 solution. The scattering angle of 2θ (=26o) corresponds to a d 

spacing of 3.3Ǻ, characteristic of the stacking of ABPBI chains212. Compared to that 

of ABPBI powder with a semicrystalline structure, this peak becomes sharper, 

implying a tendency of crystallisation. This is due to benzimidazole rings allowed to 

stack parallel to the membrane surface during the casting process, showing a greater 

regularity of polymer chains stacking. After a H3PO4 doping process, the broadened 

peak probably centred at 20~26o indicates an expanded stacking spacing due to the 

presence of absorbed H3PO4 molecules, whilst the intensively reduced peak shows a 

more amorphous structure, which was also observed in the work from other group30.  

5.3.2 Evaluation of ABPBI/POSS composite morphology 

5.3.2.1 SEM/TEM images 

The morphologies of ABPBI/POSS composite membranes were evaluated by 

inspecting the effects from solvent ethanol, ultrasonication and H3PO4 doping. 
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(a) 

(b) 

 
Figure 5-15 SEM images (left) and EDAX images (right) of samples without treatment of 
dissolving in ethanol before synthesis in-situ: a. ABPBI/3SO, b. ABPBI/3AM 
 

  

(A) (B) 

Figure 5-16 SEM images of samples without ultrasonication treatment before synthesis in-situ: 
A. ABPBI/3SO, B. ABPBI/3AM 
 

Figure 5-15 shows the SEM and EDX images of ABPBI/POSS composite 

membranes without dissolution treatment in ethanol before synthesis in-situ. 

Agglomerated SO-POSS and AM-POSS particles with large sizes were detected both 

in the cross-section and the surface of membranes. Figure 5-16 shows the SEM 

images of the composite membranes without ultrasonic treatment before synthesis 

in-situ. Although these POSS powder were dispersed in ethanol, the agglomerations 

were observed. It was found that POSS particles tend to aggregate in the synthesis 
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medium of MSA, thus, the procedures of dissolution in solvent of ethanol followed 

by ultrasonic treatment before synthesis in-situ was carried out. 

 

Compared to cases of samples without ultrasonication treatment (in Figure 5-16), the 

TEM images show uniform surfaces in the membranes cast from the product 

mixtures after dissolution in ethanol followed by ultrasonic treatment (Figure 5-17, 

Figure 5-18). With the amount of SO-POSS increasing from 1% to 5%, the surface 

of composite membrane was tending to become rougher (Figure 5-17), which might 

indicate the agglomeration occurred in high-percent POSS hybrid composites. The 

better qualities of surfaces than that of SO-POSS are observed in ABPBI/AM 

composite membranes (Figure 5-18), which implying a better dispersibility. Based 

on the FTIR analysis in section 4.3.1.1, there were end-capping reactions occurring 

between SO-POSS particles and ABPBI polymer chains which might hinder the 

movement of SO-POSS particles, thus resulting in the rough surfaces.  

 

The H3PO4 doped membranes were measured by SEM and TEM, respectively. The 

SEM images and relative EDX maps (Figure 5-19) show a uniform dispersion of 

either hybrid POSS or absorbed phosphoric acid. It is worth mentioning that the map 

of silicon (Si) can be clearly seen only when magnified in a certain extent which is 

due to the maximum of Si in a composite membrane is less than 1%. It is noteworthy 

that the cracks are observed in ABPBI/5SO and ABPBI/5AM composite membranes 

after doping in 10M and 12M H3PO4 solution followed by drying in an oven at 

150oC for 24 hours (Figure 5-20). This might be due to the stress concentration 

resulted from the agglomerated POSS particles and H3PO4 accelerates this process.  

 

A TEM was employed to investigate the size of POSS particles dispersed in ABPBI 

membranes. As shown in Figure 5-21, no visible POSS particle was observed at this 

resolution level either in undoped pristine ABPBI and ABPBI/5AM composite or in 

4M H3PO4 doped ABPBI/1AM and ABPBI/3AM samples. Additionally, the related 

EDX images (in Figure 5-21) could not show the signal of silicon in the measured 

area. As the size of POSS core is around 0.53nm204, it might be difficult to be traced 

by our TEM equipment even when the POSS particles were agglomerated. Since the 

weight percent of silicon is 19.1% in an AM-POSS particle or the maximum weight 
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percent 0.95% in ABPBI/5AM composite, it would be difficult to be precisely 

defined by the EDX detection from this TEM equipment. 

 

 

(d) 

(b) (a) 

(c) 
 

Figure 5-17 SEM images of a. SO-POSS powder, b. ABPBI/1SO, c. ABPBI/3SO, d. ABPBI/5SO 
 

(C) 

(A) 

 

(D) 

(B) 

Figure 5-18 SEM images of A. AM-POSS powder, B. ABPBI/1AM, C. ABPBI/3AM, D. 
ABPBI/5AM 
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Figure 5-19 EDX map of 10M H3PO4 doped ABPBI/5SO (left) and ABPBI/3AM (right) 
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Figure 5-20 SEM images of a. 10M H3PO4 doped ABPBI/5SO, b. 12M H3PO4 doped ABPBI/5SO, 
c. 10M H3PO4 doped ABPBI/5AM, d. 12M H3PO4 doped ABPBI/5AM dry membranes 
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Figure 5-21 TEM images (left) and EDX images (right) of (A) undoped ABPBI, (B) undoped 
ABPBI/5AM, (B) 4M H3PO4 doped ABPBI/1AM and (D) 4M H3PO4 doped ABPBI/3AM 
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(A) undoped ABPBI 
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5.3.2.2 XRD pattern 

POSS composite membranes were recorded by XRD 

patterns. The XRD patterns of undoped ABPBI/AM composite membranes are 

pattern with a peak at 26o similar to that of ABPBI 

embrane was observed in ABPBI/1AM (Figure 5-22B) and ABPBI/3AM (Figure 

3 4  

eater amorphous structure is indicated from the XRD 

The morphologies of ABPBI/

shown in Figure 5-22.  

 

It can be seen that a XRD 

m

5-22C), respectively, whilst a broad shoulder at the range of around 2θ=13~24o and a 

sharp peak at 2θ=26o appeared in that of ABPBI/5AM (Figure 5-22D). The similar 

XRD patterns from ABPBI/1AM and ABPBI/3AM composites show the 

morphology of ABPBI with a semicrystalline structure didn’t change even though 

1~3% of AM-POSS was added, which is likely to be owing to the homogeneous 

dispersion of AM-POSS. The shoulder appeared between 13~24o from ABPBI/5AM 

may overlap that of crystalline AM-POSS since main characteristic peaks of 

AM-POSS (Figure 5-22E) is at this range. In addition, it implies an expanded 

stacking spacing which might be due to the agglomeration of embedded POSS 

particles, resulting in the enlargement of separation of polymer chains. 

 

The H PO  doped ABPBI/AM composite membranes were measured by XRD. As

shown in Figure 5-23, a gr

patterns of H3PO4 doped ABPBI/AM composite membranes due to the absorbed 

H3PO4, which was the same as the H3PO4 doped ABPBI sample. Additionally, the 

peak reduced intensity from ABPBI/3AM-241PA (Figure 5-23b) compared to the 

similar peaks from ABPBI/1AM (Figure 5-23a) and ABPBI/5AM (Figure 5-23c) 

with similar H3PO4 uptake, implies the tendency of amorphousness is enhanced by 

the increased amount of absorbed PA. Compared to that of ABPBI/AM composites, 

the quite similar results were measured from the XRD patterns of ABPBI/SO 

composites and shown in Figure 5-24, which owe to the same reasons as discussed 

above. 
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Figure 5-22 XRD patterns of undoped ABPBI/AM composite membranes: B. ABPBI/1AM, C. 
ABPBI/3AM, D. ABPBI/5AM (A. ABPBI and E. AM-POSS powder are as references) 
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Figure 5-23 XRD patterns of H3PO4 doped ABPBI/AM composite membranes: a. 
ABPBI/1AM-92PA, b. ABPBI/3AM-241PA and c. ABPBI/5AM-94PA 
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Figure 5-24 XRD patterns of a. SO-POSS powder, c. ABPBI/3SO and d. ABPBI/3SO-84PA 

5.4 FTIR Analysis 

5.4.1 FTIR analysis of phosphoric acid doped ABPBI membrane 

The FTIR spectra of H3PO4 solution, pristine and H3PO4 doped ABPBI membranes 

are shown in Figure 5-25. Amongst them, the FTIR spectrum of ABPBI (Figure 

5-25a) are tentatively assigned in last chapter. The assignment of bonds of hydrous 

H3PO4 is made according to the work of Chapman et al.203 In the IR spectra of 

phosphoric acid solution (Figure 5-25e), the broad band between 3600~3300cm-1 and 

the strong absorbance peak at 1630cm-1 are assigned to water. The typical 

characteristic vibrations of phosphoric acid include (P)O-H, P-O(H) and P=O 

stretching modes. The asymmetrical and symmetrical stretching modes of O-H in 

H3PO4 are seen at 3000~2000cm-1. The asymmetric vibration of (P)O-H is located at 

3000-2700cm-1 and the doubling peak attributed to symmetric vibration is located at 

the range of 2390~2280cm-1. In addition, three peaks at the low wave-number region 

(i.e. below 1400cm-1) are regarded as being mainly hydrogen bonded P=O stretching 

(vas(PO)H3PO4) at 1165cm-1, P(OH)3 asymmetrical P-O stretching 

(vas(P(OH)3)H3PO4) at 1007cm-1 and P(OH)3 symmetrical P-O stretching 

(vs(P(OH)3)H3PO4) at 890cm-1.203 
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Due to the alkalinity of benzimidazole groups, once an ABPBI membrane is doped in 

the phosphoric acid solution, the protonation of benzimidazole groups or nitrogen 

and absorbance of phosphoric acid are expected to occur. The FTIR spectra of H3PO4 

doped ABPBI membranes with various phosphoric acid uptakes are shown in Figure 

5-25b, c and d. In the region 4000-2000cm-1, a broad band with a complex structure 

is observed in agreement with the results from the literature132. In the N-H stretching 

zone (3500-2500cm-1), an overview of the spectra reveals the evolution of nitrogen 

protonation by the acid. With elevated H3PO4 uptakes, the ratio of protonated 

benzimidazole groups increases. Therefore, the broad band of N+-H stretching 

(3000-2500cm-1) becomes stronger, whilst those of non-associated N-H (centred at 

3415cm-1) and hydrogen associated N-H (centred at 3145cm-1) decrease in intensity 

or even disappear. As a result, the overlapped C-H stretching at 3065cm-1 becomes 

apparent due to the decrease in intensity of H associated N-H stretching. The two 

bands assigned to the O-H asymmetric and symmetric stretching modes in 

phosphoric acid are also observed in the IR spectra of H3PO4 doped samples. The 

asymmetric stretching is observed at about 2700-3000cm-1 which is partially 

overlapped by that of the N+-H stretching, whilst the symmetric mode centred at 

about 2350cm-1 is most apparent. 
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Figure 5-25 FTIR spectra of a. undoped ABPBI, b. ABPBI-47PA, c. ABPBI-77PA, d. 
ABPBI-91PA membranes and e. 85% H3PO4 solution 
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In the region 2000-600cm-1, the interpretation of bonds associated with the complex 

structures resulted from the protonation reactions between benzimidazole groups and 

phosphoric acid are tentatively illustrated as follows.  

 

The typical peaks of benzimidazole groups are most apparent at the region 

1650~1270cm-1 in the IR spectra of H3PO4 doped ABPBI membrane samples, 

however, at the region below 1270cm-1, most of them are overlapped by the 

absorbance of phosphate ion functional groups except the stable peaks assigned to 

benzene ring vibration and C-H out-of-plane bending at 813, 720 and 678cm-1, 

respectively. Compared to that of undoped ABPBI membrane, the bands assigned to 

the benzimidazole structure in the H3PO4 doped samples shift to higher wave-number, 

e.g. that of conjugation mode between benzene ring and imidazole ring shifts from 

1541 to 1574cm-1, in-plane deformation of benzimidazole from 1429 to 1447cm-1, 

breathing mode of benzimidazole ring from 1281 to 1304cm-1 etc. This is due to the 

reduction of polar phosphate ions increasing the frequencies of band vibration, 

resulting in the shifts to high wave-numbers. It is noteworthy that the peak at 

1429cm-1 is assigned to both the imidazole in-plane deformation and C-C stretching. 

When doped with acid, the band attributed from benzimidazole ring in-plane 

deformation shifts to a higher wave-number, therefore the stable peak assigned to 

C-C stretching becomes apparent. Similarly, the weak peak at 1516cm-1 which shifts 

from 1541cm-1 must be attributed to the conjugation between benzene ring and 

non-protonated imidazole ring. 

 

Due to the ionic reaction between phosphoric acid and basic benzimidazole, the 

characteristic peaks of phosphate ions differ from that of hydrous phosphoric acid 

and is most obvious in the region 1200~600cm-1 in Figure 5-25b, c and d. In the IR 

spectra of ABPBI-47PA sample (Figure 5-25b), a shoulder appeared at about 

1060cm-1 is assigned to vas(PO3)HPO4
2- (P=O asymmetrical stretching in HPO4

2-)203; 

the symmetrical stretching of P=O (vs(PO3)HPO4
2-) appears at 940cm-1; the peak at 

868cm-1 is attributed to P(OH)2 symmetrical P-O stretching (vs(P(OH)2)HPO4
2-)130, 

203. In the IR spectra of ABPBI-91PA (Figure 5-25d), a shoulder appeared 

approximately at 1125cm-1 which is due to PO2 asymmetrical stretching 

(vas(PO2)H2PO4
-)203. It is noteworthy that a broad peak approximately centred at 

about 1810cm-1 is considered as the combination mode (Fermi resonance) of 
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vs(PO3)HPO4
2- at 940~950cm-1 and vs(P(OH)2)HPO4

2- at 866cm-1.203 These FTIR 

spectra assignments of phosphoric acid and phosphate ions are also summarised in 

Table 5-6. 
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Figure 5-26 Models proposed for protonation of the benzimidazole group by phosphoric acid 
 

Based on the above assignment of bands in Figure 5-25b, c and d, the band vibrations 

assigned to HPO4
2- mainly appear in the spectra of sample with low H3PO4 uptake 

(i.e. ABPBI-47PA); whilst the PO2 vibration from H2PO4
- appeared in the spectra of 

sample with high H3PO4 uptake (i.e. ABPBI-91PA). This suggests that the 

protonation reaction between benzimidazole groups and phosphoric acid might occur 

according to the mechanism proposed in Figure 5-26. At the low level of H3PO4 

absorbance, the concentration of benzimidazole groups is higher than that of 

phosphoric acid. Therefore, one phosphoric acid molecule could protonate two 

benzimidazole groups thereby forming HPO4
2-. When more H3PO4 molecules are 

absorbed, one benzimidazole group protonated by one phosphoric acid molecule 

occurs, resulting in the form of H2PO4
-. This protonation mechanism can also be 

confirmed by the work of Bouchet et al. In their work, the typical peaks assigned to 

HPO4
2- and H2PO4

- respectively, were found in PBI membranes with low and high 

H3PO4 doping levels. It was reported that bands of free (or amorphous) H3PO4 were 

detected at higher acid doping levels, which should be due to the benzimidazole 

groups fully protonated by H3PO4 resulting in the excessive free PA. 
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5.4.2 FTIR analysis of H3PO4 doped ABPBI/SO composite 
membrane 

The FTIR spectra of ABPBI/3SO composite membranes with various H3PO4 uptakes 

are shown in Figure 5-27. In the region 4000-2000cm-1, the vibration modes of N+-H 

stretching at 3000-2500cm-1, O-H of H3PO4 asymmetric and symmetric stretching 

are observed; the shifts to higher wave-numbers of typical bands of benzimidazole 

groups due to the H3PO4 protonation are seen at 1582, 1460 and 1304cm-1.  

 

In the spectra of region 2000~600cm-1, the typical vibration modes of HPO4
2- are 

observed, such as the P=O asymmetrical and symmetrical vibrations at 1050 and 

940cm-1, respectively, whilst the P-O symmetrical at 866cm-1. Additionally, the 

combination mode of vs(PO3)HPO4
2- and vs(P(OH)2)HPO4

2- is found at the region 

1950~1750cm-1. In addition, the absence of substantiated absorbance bands from 

H2PO4
- and H3PO4 shows the HPO4

2- predominates in the sample. 
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Figure 5-27 FTIR spectra of a. ABPBI/3SO-49PA, b. ABPBI/3SO-62PA and c. 
ABPBI/3SO-70PA 
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5.4.3 FTIR analysis of H3PO4 doped ABPBI/AM composite 
membrane 

The FTIR spectra of H3PO4 doped ABPBI/3AM membranes are shown in Figure 

5-28. In the region 4000-2000cm-1, the IR spectra are similar to that which appeared 

in the H3PO4 doped ABPBI and ABPBI/3SO membranes thereby sharing the same 

interpretations. The main difference is considered from the typical characteristic 

peaks of phosphate ions at the low wave-number region and is discussed as follows. 
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Figure 5-28 FTIR spectra of a. undoped ABPBI/3AM, b. ABPBI/3AM-89PA, c. 
ABPBI/3AM-117PA, d. ABPBI/3AM-153PA and e. ABPBI/3AM-194PA membranes 
 

In the spectra of ABPBI/3AM-89PA sample, the bands at 1075, 948 and 866cm-1 are 

assigned to vs(PO2)H2PO4
-, vas(P(OH)2)H2PO4

- and vs(P(OH))HPO4
2-, respectively. 

The broad peak centred at about 1168cm-1 that appeared in the spectra of 

ABPBI/3AM-89PA sample shifts into a peak with a shoulder in that of 

ABPBI/3AM-117PA and ABPBI/3AM-153PA samples, finally splits into two peaks 

at 1194 and 1125cm-1 in that of ABPBI/3AM-194PA sample. These two peaks are 

attributed to vas(PO)H3PO4 and vas(PO2)H2PO4
-, respectively.203 The Fermi resonance 

of HPO4
2- is observed at 1810cm-1 in the spectra of ABPBI/3AM-89PA and 

ABPBI/3AM-117PA samples. The peak at 972cm-1 is observed in the spectra of 
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ABPBI/3AM with H3PO4 uptake above 88% which is due to the P-O(H) 

asymmetrical stretching (vas(P(OH)3)H3PO4)203. The vibration of P-O(H) 

(vs(P(OH)2)H2PO4
-) is detected at 880cm-1 in those samples with H3PO4 uptake 

above 88%, which is also broadened in that of ABPBI/3AM-194PA by the peak 

attributed to P-O(H) symmetrical stretching (vs(P(OH)3)H3PO4) at 890cm-1. The peak 

appeared at 1694cm-1 in the spectra of 8M and 10M H3PO4 doped composite 

membranes is due to the Fermi resonance of H2PO4
-.203 The assignment of bands for 

HPO4
2-, H2PO4

- and H3PO4 is summed up in Table 5-6. 

 

With the increased H3PO4 uptake from 88% to 153%, the peak for the Fermi 

resonance of HPO4
2- decrease in intensity and disappears in that of 

ABPBI/3AM-153PA; whilst the peak of the Fermi resonance of H2PO4
- increases 

with the increased H3PO4 uptake from 153% to 194%. This suggests that HPO4
2- 

predominates in the sample with low H3PO4 uptake (i.e. 88%). With H3PO4 uptake 

increasing (i.e. from 153% to 194%), the associated anion is rather H2PO4
-. Also the 

peak due to the vibration of N+-H increases with the increase of H3PO4 uptake, 

showing the increased degree of protonation results from the enhanced acid 

absorbance. A shoulder appearing at 3660~3500cm-1 in the spectra of 

ABPBI/3AM-153PA and ABPBI/3AM-194PA is due to the absorbed moisture. 

Additionally, the vibrations of amorphous H3PO4 at 1194 and 972cm-1 increase 

intensively with the elevated H3PO4 uptakes, indicating a maximum degree of 

protonation must have been reached during this term. Since one repeat unit of 

ABPBI or benzimidazole group is protonated theoretically by one phosphoric acid 

molecule130, the excess H3PO4 exists rather in free form. 
 
Table 5-6 FTIR spectra assignment of phosphoric acid and phosphate ions (solid state) 

Wavenumbers / Assignment 
Band 

H3PO4 H2PO4
- HPO4

2-

(P)O-H 3000-2700  vas(OH)H3PO4 3000-2700 vas(OH)H2PO4
- 3000-2700 vas(OH)HPO4

2-

 2390-2270  vs(OH)H3PO4 2320  vs(OH)H2PO4
- 2390-2700 vs(OH)HPO4

2-

P=O 1194   vas(PO)H3PO4 1125  vas(PO2)H2PO4
- 1050  vas(PO3)HPO4

2-

  1075  vs(PO2)H2PO4
- 940   vs(PO3)HPO4

2-

P-O(H) 972    vas(P(OH)3)H3PO4 948   vas(P(OH)2)H2PO4
-  

 890    vs(P(OH)3)H3PO4 880   vs(P(OH)2)H2PO4
- 866   vs(P(OH))HPO4

2-
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5.5 Thermostability of H3PO4 Doped Membranes 

The thermostability of H3PO4 doped ABPBI and its composite membranes were 

investigated by TGA measurement. 

 

The TGA curves of 85.0wt% H3PO4 solution are shown in Figure 5-29. It can be 

seen that there are three stages of weight loss occurring at the range of 20~266oC, 

266~506oC and 506~750oC corresponding to 26.4, 10.1 and 61.0% of weight loss. 

 

Since there is 15% of water in the H3PO4 solution and the decomposition of H3PO4 

starts from 158oC, the weight loss before that should owe to the evaporation of water. 

The found value of 15.9% roughly matches the real water content.  

 

The dimerisation of H3PO4 corresponds to different decomposition reactions shown 

as following14: 

 

↑+→ OHOPHPOH 2724432                          5-2 

↑+→ OHHPOOPH 23724 2                           5-3 

↑+↑→ OHOPHPO 25232                            5-4 

 
In theory, the dimerisation of phosphoric acid (or orthophosphoric acid) (in reaction 

5-1) produces pyrophosphoric acid and results in 9.2% of weight loss. With the 

increase of temperature, the continuous dimerisation comes from the dimerisation of 

pyrophosphoric acid (in reaction 5-2), resulting in 10.1% of weight loss. The final 

decomposition reaction (reaction 5-3) results in phosphorus pentoxide (P2O5) and 

water which both evaporate from the crucible. It can be seen that the found values 

well match the calculated results. 

 

The TGA curve of ABPBI and ABPBI/POSS doped from 10M H3PO4 is respectively 

shown in Figure 5-30. It can be seen that the weight losses due to water evaporation 

before 158oC, subsequent continuous release of water, the dimerisation of H3PO4 

started from 158oC and the decomposition of polymer chains after about 500oC are 

apparent according to the TGA and the relative DTG curves, indicating that the 

thermostability of H3PO4 doped membranes is limited by the thermostability of PA.  
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Figure 5-29 TG curve of 85% H3PO4 solution 
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Figure 5-30 TGA curves of 10M H3PO4 doped membranes: a. ABPBI-79PA, b. 
ABPBI/3SO-94PA and c. ABPBI/3AM-194PA 
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As discussed in section 4.1.3.2 in terms of the thermostability of pristine ABPBI, the 

weight loss before 470oC included the elimination of water and residual low mass 

polymers, whilst the weight loss of undoped ABPBI/POSS composite samples 

included the gradual degradation of POSS particles at this range. The decomposition 

of phosphoric acid also locates at this temperature range. Thus it generates the 

difficulty to quantitatively analysis the amount of water decomposed from absorbed 

phosphoric acid in the acid doped samples. However, the weight loss resulted from 

the degradation of POSS can be neglected since the amount of POSS is less than 5% 

and the value of weight loss before the decomposition of POSS inorganic core is 

very small. Thus, it is possible to qualitatively compare the H3PO4 absorbility when 

all samples are treated at the same condition. Figure 5-30 compares the 

thermostabilities of 10M H3PO4 doped ABPBI, ABPBI/3SO and ABPBI/3AM 

membranes. At the decomposition range of H3PO4 (158~506oC), 6.0% of weight loss 

happens in 10M H3PO4 doped ABPBI sample, whilst 9.3% and 10.1% of weight loss 

in 10M H3PO4 doped ABPBI/3SO and ABPBI/3AM, respectively. The higher values 

of weight loss of composite membranes indicate the higher H3PO4 absorbance, 

resulting in a higher amount of evaporated water dimerised from PA, which is also 

confirmed by the values of H3PO4 uptake measured from the weights before and after 

the doping process, i.e. 79% of H3PO4 uptake was found in 10M H3PO4 doped 

ABPBI, whilst 94% and 194% of H3PO4 uptake in 10M H3PO4 doped ABPBI/3SO 

and ABPBI/3AM, respectively.  
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Chapter 6 RESULTS AND DISCUSSION: 

PROTON CONDUCTIVITY OF ABPBI 

BASED POLYMER ELECTROLYTE 

MEMBRANES 

6.1 Background and Theory of Impedance Spectroscopy 

6.1.1 Introduction of impedance spectroscopy 

The proton conductivity is generally obtained from the measurement of impedance or 

resistivity of the proton conductive membrane against the flow of either direct 

current (dc) or alternating current (ac).213 The electrical impedance (Z) is defined as 

the ratio of sinusoidal voltage (V~ ) applied to an electrical system to the resulting 

current ( I~ ). It is represented as a complex quantity that consists of a real part 

(resistance, Z′ or R) and an imaginary part (reactance, Z″) with phase angle θ (shown 

in Figure 6-1).  

 

) θ
Z'

Z'' Z

 
Figure 6-1 A Nyquist plot of imaginary impedance (Z˝) against real impedance (Z΄) to define 
electrical impedance (Z) and phase angle (θ) 
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The impedance can be expressed with the rectangular coordinate form (or so-called 

Nyquist plot): 

 

IVZiZiZZZ ~~sincos''' =+=+= θθ                     6-1 

 
where, the phase angle, ( )'''tan 1 ZZ−=θ , degree; the absolute magnitude of total 

impedance, 22 ''' ZZZ += , ohm(Ω); 1−=i . 

 

If only a pure resistance exists in a cell, the current and potential are in the same 

phase, so Z=Z′=R. Whilst a cell contains only a capacitance, the phase difference 

between the current and potential is 90 degree, thus Z=Z″. However, the situation in 

an electrochemical cell is much more complex and often represented by an 

equivalent circuit as shown in Figure 6-2a. 

 

Rohm

Zf

Cd

ic+if
if

ic

Rct ZwZf

a. b.  
Figure 6-2 A typical equivalent circuit often used for an electrochemical cell: a. the equivalent 
circuit, b. the subdivision of the Faradic impedance 
 

The total current through the electrode interface is the sum of contributions from the 

faradic current (if) and double-layer charging current (ic). The double-layer 

capacitance (Cd) is nearly a pure capacitance. The resistance (RΩ or Rohm) is 

representing the ohmic resistance of the cell since the entire current pass through 

these pure resistors (electrolyte, electrode etc.). The faradic process cannot be 

represented by simple linear circuit elements like R and C, whose values are 

independent of frequency. Therefore the Faradic impedance (Zf) must be considered 

as the complex impedance.214 There are various ways of subdividing Faradic 

impedance. One of the simplest ways is to subdivide into charge transfer resistance 

(Rct) and mass transfer impedance (or Warburg impedance, Zw). 
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Figure 6-3 A Nyquist plot of the impedance for an electrochemical cell214 
 

A Nyquist plot of the equivalent circuit of an electrochemical cell (Figure 6-3) is to 

explain the relationship between Z′ and Z″ which depends on the frequency214. 

 

When the frequency is low, the relationship between Z′ and Z″ adapts to the 

following equation 

 

dct CRRZZ 2''' 2δ+−−= Ω                           6-2 

 
where δ is the constant of dependent on the diffusion coefficient and concentration of 

the electro-active species. 

 

As shown in Figure 6-3 (the straight line part), the plot of Z″ against Z′ is a straight 

line with unit slope and the intercept of this straight line is RΩ + Rct - 2δ2Cd. In the 

low frequency range, the frequency dependence comes only from Warburg 

impedance, thus the linear correlation of Z' and Z" is the characteristic of a 

diffusion-controlled electrode process. 

 

At high frequency, the impedance is dominated by the charge-transfer resistance and 

the double-layer capacitance, whilst Zw becomes unimportant relative to Rct. The 

relationship between Z' and Z" can be represented by 
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( ) ( )222 2''2' ctct RZRRZ =+−− Ω                       6-3 

 
Hence the plot of Z" versus Z' gives a semicircular centered at Z' = RΩ +Rct /2 with a 

radius of Rct (the semi-circle part in Figure 6-3). 

 

When the impedance is measured at a wide frequency range, the above two different 

factors (charge transfer and mass transfer) dominated modes can be combined and 

shown in Figure 6-3 (solid curve). However, the boundary of the two regions is not 

well defined and its determining factor is the relation between charge transfer and 

Warburg impedance. If the electrochemical kinetic is slow, the charge-transfer 

resistance makes a significant contribution to total impedance, whilst the Warburg 

impedance is less important, hence the Nyquist plot becomes a semi-circle with a 

very small mass transfer controlled region. If the kinetics are very fast, the 

impedance from charge transfer can be ignored compared to Warburg impedance; 

thus, mass transfer dominates the electrode process, and a straight line is obtained 

and the semi-circle can hardly be seen. 

 

Although the impedance can be measured by the dc and ac mode, the ac technique 

still is the most appropriate choice and widely used by many groups215-217. As 

protons are the sole mobile charges in these electrolyte membranes, their 

conductivity can be measured by a dc electrochemical impedance spectroscopy (EIS) 

technique using only the H/H+ reversible electrodes, which is expensive and too 

complex for a routine test. Additionally, when the proton conductivity is measured 

using irreversible electrodes in the dc mode, unfavourable ionic blocking is formed 

and subsequently results in inaccurate measurement. Therefore, an ac EIS technique 

allowing polarisation effects at the irreversible electrodes (i.e. Pt) to be avoided is 

commonly considered as the most appropriate method for solid electrolytes.216 

6.1.2 Introduction of measurement techniques of electrochemical 
impedance spectroscopy (EIS) 

When the impedance is measured by the ac EIS technique, the auto-balancing bridge 

method is most favourable for general purpose measurement due to its wide 

frequency range (i.e. from 5 Hz to 40 MHz) and its high accuracy over a wide 

impedance measurement range (i.e. from 1 milli ohm to 100 meg ohm).213 In the 
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auto-balancing bridge, there are four coaxial terminals, i.e. two reference electrodes 

(voltage Hi, voltage Lo), one working electrodes (current Hi) and one counter 

electrode (current Lo). The impedance is computed from the voltage difference 

between reference electrodes. However, the different connection modes of 

interconnecting the four terminals (which are relative to different methods) generate 

different results of sample impedances. Of these methods, the four-probe method and 

two-probe method is generally used. Basically, the result from four-probe method is 

more accurate than that from two-probe which is due to the elimination of the extra 

effects from the lead impedance in the former method.215 

 

However, in the four-probe method, the conductivity is measured in the longitudinal 

direction on a membrane side along a face exposed to environment. Obviously, this 

method is only suitable for the isotropic membranes with surface properties 

indistinguishable from the bulk. In the two-probe method, the conductivity is 

measured in the transverse direction, which is the same as the proton conducting 

direction in a real fuel cell system, thus it can reflect the virtual membrane proton 

conducting property. In addition, in the two-probe cell configuration, the interfacial 

impedance is expected to dominate in the lower frequency range. It is reported that 

the membrane ionic resistance can be satisfactorily resolved from interfacial 

impedance only when the frequency is above 100Hz218. 

6.2 Experimental Details 

6.2.1 Experimental apparatus 

Since the effect of extra impedance (i.e. interfacial impedance) can be eliminated 

when measured at above 100Hz as discussed above, and the proton conducting 

direction is the same as that in a real fuel cell, the two-probe EIS technique is 

employed in this project. 

 

A Solartron Analytical 1280 Electrochemical Measurement Unit (1280 EMU, 

Solartron Analytical Ltd.) was used to measure the impedance of membranes (shown 

in Figure 6-4). The 1280 EMU is composed of an electrochemical interface (ECI), a 

frequency response analyser (FRA) and a controller of computer system. The 

controller is responsible to send commands to the ECI and receive impedance data 
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from the FRA. According to these commands from the controller, the ECI, which is 

used as a galvanostat or potentiostat, provides a constant current or voltage to 

maintain the dc polarisation of an electrochemical cell and measures the resulting 

cell behaviour. The FRA, on the one hand, is used as a precision signal generator to 

generate an ac perturbating signal for the cell (which will be added to the dc 

polarisation provided by the ECI) and, on the other hand, is used as a analyzer to 

analyse the ac component of cell polarisation (which is then output as cell impedance 

data to the controller). Finally, those impedance data returned to the controller are 

treated with the impedance software of Z-Plot. 

 

The home-made electrochemical cell connected with the 1280 EMU is a simply 

equipped EMA (electrode-membrane assembly). The electrolyte membrane was 

sandwiched between two circular platinum (Pt) electrodes (diameter 2.00mm, purity 

99.95%, Goodfellow Cambridge Ltd.). The two Pt rods were vertically fixed in the 

insulator PTFE frame (in Figure 6-4). Two copper wires, respectively welded to two 

Pt rods, were connected with the 1280 EMU via two-probe EIS mode. It was worth 

mentioning that each Pt rod must be polished well according to standard electrode 

polishing guidelines. In details, a Pt rod was initially sanded with Buehler Carbimet 

silicon carbide paper of grit numbers 240, 400 and 600 (Buehler Ltd., USA), then 

carefully polished on a rotating polishing machine using 1µm alumina (Buehler Ltd., 

USA) first, then 0.05µm diamond (Buehler Ltd., USA) in order on different 

microcloth pads (no. 40-7208 and 40-7308, Buehler Ltd., USA). The electrode was 

cooled with deionised water while polishing. The final step was ultrasonic cleaning 

for about 1 minute in a beaker of ethanol, followed by washing with deionised water. 

At that point the Pt electrode working face had a shiny, mirror-like appearance. 

Before each experiment, the polishing step was begun by polishing with 0.05µm 

diamond. 

 

During the impedance measurement, a 320g mass was placed on the upper electrode 

while the bottom electrode was fixed. This is to ensure that the electrodes and the 

membrane were in good contact without significant compression on the membrane. 

In a two-probe mode, the impedance analyser often works in a potentiostatic mode 

with a small applied potential perturbation. In this experiment, the 10mV 

perturbation potential was used. 
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Figure 6-4 Conductivity measurement unit used in this work 

6.2.2 Calculation of the proton conductivity 

The proton conductivity (σ) of an electrochemical cell can be calculated by the 

following equation: 

 

( )ARd ×=σ                                 6-4 
 
where d is the distance between two electrodes, i.e. the thickness of a sample 

membrane, cm; A is the testing area of a sample membrane, i.e. the area of working 

face of Pt rod (in this experiment, the diameter of Pt rod is 2.00mm, therefore, 

A=3.14×10-2cm2); R is the bulk resistance of the membrane sample derived from an 

impedance analyser, Ω. 

 

Here the bulk resistance consists of the ohmic resistance, the contact resistance and 

the intrinsic resistance of Pt electrodes. It is considered that the bulk resistance is the 

ohmic resistance, because the contact resistance and the resistance of Pt electrodes 

are small enough to be negligible compared with the ohmic resistance.215  
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Since no bias voltage was applied on the membrane, and the perturbation voltage 

was very small (10 mV), which was not sufficient to drive any significant 

electrochemical reactions on the electrodes, thus meaning the charge transfer 

resistance can be assumed to be infinite, the Faradic impedance (Figure 6-2, a.) can 

thus be ignored. Double layer capacitance always exists in an electrochemical cell. 

The equivalent circuit at high frequencies of the electrochemical cell was simplified 

into the membrane resistance (Rm) and the double layer capacitance (Cd) (shown in 

Figure 6-5, a). Accordingly, Rm was the value of the intercept on the impedance plot 

at the high frequency region. 

 

Rm
Cd

CPE

Rct+Rw

Rm

a. b.  
Figure 6-5 Equivalent circuit of the membrane impedance measurement system (a) at high 
frequency; (b) in this experiment 
 

However, the highest frequency of Solartron 1280 EMU provided is 20 kHz. It is 

indicated that the frequency was not high enough to drive the impedance plots to 

intercept the real part (Z′ axis). In other words, Rm couldn’t be directly obtained from 

the membrane impedance plot.  

 

In order to ensure that the high frequency intercept on an impedance plot represents 

the membrane resistance, one of the methods is to generate different bias voltages on 

the membrane. Li, X’s experimental results219 showed that the applied various bias 

voltages (from 0 to 1.8V) had almost no effect on the intercept on Z′ axis, which 

indicated that the membrane resistance did not depend on the bias voltage. However, 

a high bias voltage could induce the unexpected electrochemical reactions to happen 

thereby affecting the result of the membrane resistance measurement, since the 

equivalent circuit was based on the assumption that the Faradic impedance could be 

ignored when no significant electrochemical reaction was in evidence during the 

measurement. 
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Another valuable method is to use an equivalent circuit to fit the measured 

impedance plots and simulate from a wide frequency range thus obtaining the 

intercept on Z′ axis. In this experiment, the equivalent circuit was employed 

including Faradic resistance as the Faradic resistance could not be ignored at this 

frequency range (from 20 kHz to 100Hz). Additionally, a constant phase element 

(CPE) was brought in and replaced the double layer capacitor. Often a CPE is used in 

a model in place of a capacitor to compensate for non-homogeneity in the system. 

For example, a rough or porous surface can cause a double layer capacitance to 

appear as a constant phase element. In practice, the membrane surfaces were quite 

rough compared with the mirror-like Pt electrodes. Hence, the equivalent circuit used 

in this experiment was illustrated in Figure 6-5, b. Through this equivalent circuit, 

the membrane impedance was read from the intercept on Z axis at high frequency. 

Finally the proton conductivity was calculated through equation 6-4. 

6.3 Evaluation of Measurement Technology 

6.3.1 Verification of the equivalent circuit and calculation of 
conductivity 

The equivalent circuit was verified by fitting the Nyquist plot output from the EIS 

equipment with it to check the repeatability of both curves. Both the Nyquist plot of 

ABPBI-92PA and Nafion 117 samples with the respective thickness of 0.023cm and 

0.0178cm were presented here. The fitted Nyquist plot subsequently was simulated 

in a wide frequency range so that it could intercept the Z′ axis and obtain the 

membrane resistance.  

 

Figure 6-6 shows the Nyquist plot of water saturated ABPBI-94PA measured in the 

frequency range of 20 kHz~100Hz at 20oC. The coordinate systems of Z  and θ 

against frequency shown in this figure are the Bode plot, different expression form of 

impedance. The Nyquist plots fitted by the equivalent circuit (as shown in Figure 

6-5b) were given in Figure 6-8, whilst a simulated curve of Nyquist plots at the wide 

frequency range of 1010~10-3Hz was presented in Figure 6-7. With simulation from 

the wide frequency range of 1010~10-3Hz, a semi-circle was also observed and the 

intercept on the impedance plot (Z′ axis) or the membrane resistance was achieved at 

the frequency between 106~105Hz, which was 24.9(Ω), so that the conductivity 
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according to equation 6-4 was worked out as 2.9×10-2S.cm-1. This was also at the 

same order of magnitude compared to the results measured at similar conditions from 

the literature127. 

 

Comparing the real and fitted Nyquist plots, the highly congruent curves indicate that 

the equivalent circuit successfully fitted the real circuit; meanwhile, the semi-circle 

shape of Nyquist plots simulated from a wide frequency range agreed with Figure 

6-3 and the related analysis discussed above. Additionally, it is also indirectly 

supported by the consistency of calculated conductivity in this work and the results 

from the literature.  

 

Similarly, the resistance of a commercial Nafion 117 membrane was also worked out 

with this equivalent circuit and shown in Figure 6-9. The obtained resistance of the 

membrane of 51.0Ω was allowed to work out the proton conductivity with 

1.1×10-2S.cm-1, which is close to the published results220.  

 

 
Figure 6-6 Nyquist plot of ABPBI-94PA measured in a frequency range of 20kHz~100Hz at 
20oC and saturated condition) 
 

155 



Chapter 6 RESULTS AND DISCUSSION: PROTON CONDUCTIVITY OF ABPBI BASED POLYMER ELECTROLYTE 

 
Figure 6-7 Simulated Nyquist plot of ABPBI-94PA in the frequency range of 1010Hz~10-3Hz 
 

 
Figure 6-8 Fitted Nyquist plot of ABPBI-94PA in the measuring frequency range 
(20kHz~100Hz) 
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Figure 6-9 Simulated Nyquist plot of Nafion 117 in the frequency range of 1010Hz~10-3Hz 

6.3.2 Effect of bias voltage on the proton conductivity 

The effect of bias voltage on the proton conductivity was investigated by measuring 

the membrane resistance with various bias voltages applied on a membrane sample.  

 

Figure 6-10 shows the Nyquist plots of Nafion 117 membrane impedance with 

various bias voltages applied. It can be seen that, with the bias voltage increased 

from 0 to 1.0V, the Nyquist plots were almost unchanged, but the shape of the curve 

changed obviously at the bias voltage of 1.3V. Both the semi-circle and straight line 

components became evident when the bias voltage of 1.9 and 2.2V were applied 

respectively. It is also very clear that the various bias voltages have little effect on 

the high frequency intercept, which suggests that the intercept with the Z′ axis at high 

frequency indicates the membrane resistance, since the membrane resistance does not 

depend on the bias voltage. The charge transfer resistance (Rct) started to decrease 

significantly when the bias voltage of 1.3V was applied. It is well known that the 

standard potential of the water electrolysis cell is 1.23V at 25oC at pH7 and the 

overall reaction of electrolysis of water is 
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)()()(2 222 gOgHlOH +=                      6-5 
 
Therefore, the applied bias voltage of 1.3V would drive this electrolysis reaction to 

occur on the Pt electrode surface. In fact, bubbles were observed on the electrode 

surfaces in the experiments at the bias voltage above 1.3V, which was also observed 

in Li’s work219. The appeared part of semi-circle for a bias voltage of 1.3V and 1.9V 

and an intact semi-circle for a bias voltage of 2.2V were clearly observed in Figure 

6-10, indicating a parallel R-C element in the electrochemical cell (Figure 6-5a). 

With the frequency decreasing, the subsequently appearing straight line implies the 

existence of Warburg impedance (Figure 6-5b). In other words, it means proton 

transfer is dominated by the mass transfer rather than charge transfer in these 

conditions.  

 

An anhydrous ABPBI-74PA sample was measured at 160oC with the bias voltage 

increasing from 0 to 2.2V. The related Nyquist plots are shown in Figure 6-11. It can 

be seen that, with the bias voltage increasing from 0 to 1.0V, the curvature of the 

curve increased, whilst slightly increased when the bias voltage increased from 1.4 to 

1.6V. Finally, a clear partial semi-circle appeared both at the bias voltage of 2.0 and 

2.2V. It is also clear that the membrane impedance at high frequency is not affected 

by the bias voltage. With the bias voltage increasing, the increased curvature of the 

membrane impedance curve indicates that charge transfer resistance starts to 

decrease. Therefore, the equivalent circuit as shown in Figure 6-5b would be 

adequate rather than that in Figure 6-5a.  
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Figure 6-10 Nyquist plot of the impedance of saturated Nafion 117 membrane at various bias 
voltages 
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Figure 6-11 Nyquist plot of the impedance of anhydrous ABPBI-74PA at 160oC and various bias 
voltages 
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6.3.3 Effect of pressure on the proton conductivity 

The effect of the pressure or compression on the proton conductivity was 

investigated by measuring the membrane resistance under various pressures applied 

on the membrane surfaces. The Nyquist plots of the impedance of Nafion 117, 

ABPBI and ABPBI/3SO-92PA are shown in Figure 6-12, Figure 6-13 and Figure 

6-14, respectively. 

 

It can be seen that, with the pressure increased from 3.0 to 18.0kPa, the impedance 

curve moved forward to an imaginary axis. Correspondingly, the obtained resistance 

of Nafion 117 membrane reduced from 75.5 to 48.6Ω (in Figure 6-12). When the 

pressure continuously increased to 240kPa, the resistance was almost not affected. 

The increased resistance (65.5Ω) was found when 1.0MPa of pressure was applied. 

 

Normally, the pressure on a membrane is essential for the proton conducting, which 

makes the electrodes perfectly contact with the membrane therefore reducing the 

interfacial resistance. Due to owing an essential mechanical property, saturated 

Nafion 117 membrane endured a pressure up to 1.0MPa in this work; therefore, the 

membrane resistance almost remained unchanged when the pressure increased from 

18 to 240kPa. However, the significant increase of the membrane resistance when 

the pressure of 1.0MPa was applied must be due to the partial water forced out at this 

pressure.  

 

It can be seen that, with the pressure increasing to 250kPa, the decreased values of 

membrane resistances were found in either H3PO4 doped ABPBI (Figure 6-13) or 

H3PO4 doped ABPBI/POSS membrane (Figure 6-14). Due to the better mechanical 

property compared to that of Nafion 117, the result of those membrane impedances 

was not affected although these membranes were bearing a pressure increasing from 

250kPa to 1.5MPa. Therefore, the constant pressure of 1.0MPa was applied on any 

ABPBI or ABPBI/POSS composite membrane during its conductivity measurement.  

 

160 



Chapter 6 RESULTS AND DISCUSSION: PROTON CONDUCTIVITY OF ABPBI BASED POLYMER ELECTROLYTE 

50 100 150 200
0

-50

-100

-150

-200

 

 

Z'
' /

 Ω

Z' / Ω

Nafion 117
 3KPa        (75.7)
 18KPa      (48.6)
 24KPa      (46.1)
 240KPa    (48.6) 
 1.0 MPa    (65.5)

In
cr

ea
se

d 
fre

qu
en

cy

 
Figure 6-12 Nyquist plot of the impedance of saturated Nafion 117 membrane at 20oC and 
ambient atmosphere 
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Figure 6-13 Nyquist plot of the impedance of saturated ABPBI-47PA at 20oC and ambient 
atmosphere 
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Figure 6-14 Nyquist plot of the impedance of saturated ABPBI/3SO-92PA measured at 20oC and 
ambient atmosphere 

6.4 Proton Conductivity of Phosphoric Acid doped 

Membranes 

6.4.1 Effect of temperature on proton conductivity 

The conductivities of H3PO4 doped anhydrous ABPBI, ABPBI/1AM, ABPBI/3AM 

ABPBI/5AM and ABPBI/3SO membranes are shown in Figure 6-15, Figure 6-16, 

Figure 6-17, Figure 6-18 and Figure 6-19, respectively. The conductivity increased 

with the rising temperatures and H3PO4 uptake for all anhydrous membranes.  

 

To gain an insight into the motional processes causing nuclear relaxation and 

conductivity, it is common to construct Arrhenius plots of temperature and the 

conductivity100, 116, 130. The temperature dependence of conductivity can be described 

by an Arrhenius equation: 

 

TR
EaT 1

)ln(
)ln(

0

×
∆

−=
σ
σ

                          6-6 
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where Ea is activation energy, σ0 is pre-exponential factor, R is gas constant, T is 

absolute temperature, whilst σT is the conductivity at temperature T. 

 

The related Arrhenius plots of ln(σT) against 103/T are shown in Figure 6-20, Figure 

6-21, Figure 6-22, Figure 6-23and Figure 6-24, respectively. The activation energy 

(Ea) of proton conducting is derived from these plots and given in Table 6-1, Table 

6-3 and Table 6-2, respectively. 

 

As shown in Table 6-1, Ea increased from 36.6kJ/mol of ABPBI-43PA, to 

31.5kJ/mol of ABPBI-60PA then decreased with the increased H3PO4 uptake. 

Similarly, Ea first increased then decreased with the H3PO4 uptake increasing from 

67 to 102% (in Table 6-2). Ea decreasing with the increased H3PO4 uptake was 

observed in ABPBI/AM composite membranes (in Table 6-3). With the similar 

H3PO4 uptake, Ea of ABPBI was lower than that of ABPBI/POSS composites, i.e. Ea 

of 28.0kJ/mol was from ABPBI-41PA and 36.6kJ/mol from ABPBI/5AM-43PA, 

19.0kJ/mol from ABPBI-70PA and 31.4kJ/mol from ABPBI/1AM-67PA and 

28.0kJ/mol from ABPBI/3SO-74PA.  

 

The activation energy (Ea) is the sum of the enthalpies of defect pair (charge carrier) 

formation (∆Hf) and defect migration (∆H), and indicates the ease for proton hopping 

and rotation of the donor and acceptor100. A large value of Ea indicates the enthalpy 

required for proton transfer is high, causing low conductivity. The reduction of Ea 

with the increased H3PO4 uptake indicates the enthalpy required for proton transfer 

through H3PO4 molecules must be lower than that through imidazole groups. The 

higher Ea from ABPBI/POSS composite than that of ABPBI with the same or similar 

H3PO4 uptake implies that the POSS core might twist and turn the route of proton 

transfer, causing more enthalpy required of proton hopping. However, the lower Ea 

from ABPBI and ABPBI/3SO with low H3PO4 uptake (i.e. before the maximum 

protonation is reached) might be due to a different dominant proton hopping route 

which will be discussed in the following section. It is also noteworthy that Ea of 

ABPBI/3AM was calculated from the temperature below 140oC due to the slow 

increase of conductivity from 140 to 160oC in which the Arrhenius plots were not 

linear against the increased temperature. This should be due to the self-dissociation 

of anhydrous H3PO4 and will be discussed in the following section.  
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Figure 6-15 Variation of conductivity of anhydrous H3PO4 doped ABPBI with temperature 
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Figure 6-16 Variation of conductivity of anhydrous H3PO4 doped ABPBI/1AM with 
temperature 
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Figure 6-17 Variation of conductivity of anhydrous H3PO4 doped ABPBI/3AM with 
temperature 
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Figure 6-18 Variation of conductivity of anhydrous H3PO4 doped ABPBI/5AM with 
temperature 
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Figure 6-19 Variation of conductivity of anhydrous H3PO4 doped ABPBI/3SO with temperature 
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Figure 6-20 Arrhenius plot of conductivity of H3PO4 doped ABPBI 
 

166 



Chapter 6 RESULTS AND DISCUSSION: PROTON CONDUCTIVITY OF ABPBI BASED POLYMER ELECTROLYTE 

2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65
-10

-9

-8

-7

-6

-5

Y = 0.21686 - 2.51847 * X

Y = 0.73018 - 3.15284 * X
Y = -0.98555 - 3.56296 * X  

 

 ABPBI/1AM-67PA
 ABPBI/1AM-79PA
 ABPBI/1AM-92PA
 ABPBI/1AM-102PA

ln
(σ

) /
 S

.c
m

-1

103/T / K-1

Y = -1.51064 - 3.77149 * X

 
Figure 6-21 Arrhenius plot of conductivity of anhydrous H3PO4 doped ABPBI/1AM 
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Figure 6-22 Arrhenius plot of conductivity of anhydrous H3PO4 doped ABPBI/3AM 
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Figure 6-23 Arrhenius plot of conductivity of anhydrous H3PO4 doped ABPBI/5AM 
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Figure 6-24 Arrhenius plot of conductivity of anhydrous H3PO4 doped ABPBI/3SO 
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Table 6-1 Activation energy of conductivity of H3PO4 doped ABPBI membrane 

PA doped ABPBI 
Activation energy (Ea)

(kJ/mol) 

Temperature range (T)

(oC) 

ABPBI-41PA 28.0 90~160 

ABPBI-60PA 31.5 90~160 

ABPBI-70PA 19.0 90~160 

ABPBI-97PA 12.1 90~160 

 
Table 6-2 Activation energy of conductivity of H3PO4 doped ABPBI/3SO composite membrane 

PA doped ABPBI/3SO 
Activation energy (Ea) 

(kJ/mol) 

Temperature range (T)

(oC) 

ABPBI/3SO-67PA 28.0 90~160 

ABPBI/3SO-74PA 31.5 90~160 

ABPBI/3SO-102PA 21.1 90~160 

 
Table 6-3 Activation energy of conductivity of H3PO4 doped ABPBI/AM composite membrane 

PA doped ABPBI/AM 
Activation energy (Ea)

(kJ/mol) 

Temperature range (T)

(oC) 

ABPBI/1AM-67PA 31.4 110~160 

ABPBI/1AM-79PA 29.6 110~160 

ABPBI/1AM-92PA 26.2 110~160 

ABPBI/1AM-102PA 25.5 110~160 

ABPBI/3AM-88PA 40.4 60~160 

ABPBI/3AM-117PA 32.4 60~140 

ABPBI/3AM-153PA 25.2 60~140 

ABPBI/3AM-194PA 24.8 60~140 

ABPBI/3AM-241PA 21.7 60~140 

ABPBI/5AM-43PA 36.6 90~160 

ABPBI/5AM-76PA 24.8 90~160 

ABPBI/5AM-106PA 21.1 90~160 
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6.4.2 Effect of H3PO4 on proton conductivity 

In a H3PO4 doped membrane, the proton transfer is dominant by a hopping 

mechanism which can be expressed by the hopping model10  
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22

0 ασ                     6-7 

 
where z is the charge number; F is the Faraday constant; C is the concentration of 

mobile species; α is the reciprocal number of all possible hopping directions (1/6 for 

a stereo structure); νo is the hopping frequency; d is the hopping distance between 

sites; ∆S and ∆Sf is the activation entropy of migration and formation of proton 

defect, respectively. 

 

In a H3PO4 doped membrane, imidazole groups in ABPBI polymer, H3PO4 and water 

can act as both the proton donor and acceptor in the hopping model100. The 

concentration of mobile species, C, is related to the concentration of proton donors 

and acceptors which is increased with the increasing H3PO4 and water uptakes. The 

distance for proton hopping, d, is related to the type of hydrogen bond. The hydrogen 

bond can be formed between either two of imidazole group, H3PO4 and water, which 

is proposed in Figure 6-25. Obviously, different hydrogen bonds owe different 

proton hopping distances. Increasing H3PO4 and water uptake can change the ratios 

of different bonds so as to affect d. The hopping frequency, νo, is related to the 

vibration of hydrogen bonds63, similar to d, is affected by the ratio of different 

hydrogen bonds. The number of proton charge carriers increases with increasing 

H3PO4 and water uptake, causing an increase of hydrogen bonds that weakens the 

original chemical bonds and results in the shift of νo to low frequency. ∆S and ∆Sf 

are related to the charge of configuration and vibration of the system before and after 

the proton hopping and the reorientation of the proton carriers. 

 

As mentioned above, the conductivity rose with the H3PO4 uptake increasing in all 

samples. Although the increased H3PO4 concentration leads to the conductivity 

increasing, the proton hopping route can be different when different amounts of 

H3PO4 were absorbed. 
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At lower H3PO4 uptake (<75% or before the maximum protonation is reached), 

H2PO4
- and HPO4

2- are the dominant anion over the entire acid concentration which 

were confirmed by FTIR. Protons transfer mainly along hydrogen bonds which are 

formed between protonated imidazole groups (N+-H···N) on the neighbouring 

polymer chains and between imino nitrogen and phosphate ions (N+-H···H2PO4
- or 

HPO4
2-···N-H). With more H3PO4 absorbed, the ratio of proton transfer along 

N+-H···H2PO4
-···N-H to N+-H···N increased. The proton transfer might occur mainly 

along N+-H···H2PO4
-···N-H when the maximum protonation of imidazole groups was 

reached. The continuously increased H3PO4 uptake caused more free (or 

amorphous130) H3PO4. Thereby the proton transfer might occur mainly through 

hydrogen bonds (shown in Figure 6-25), resulting in the increase of the overall 

conductivity. It is noteworthy that lower Ea from those samples with H3PO4 uptake 

under the level of maximum protonation of imidazole groups indicates that the 

enthalpy required for proton transfer through ionic bonds i.e. N+-H···H2PO4
- or 

HPO4
2-···N- must be lower than through hydrogen bonds, since the dominant route 

for proton transfer is through ionic bonds below the level of the maximum 

protonation of imidazole groups and through other hydrogen bonding forms.  

 

At the high H3PO4 uptake i.e. about >117% in ABPBI/3AM samples, more H3PO4 

was present in a H3PO4 doped membrane and formed H3PO4-rich domains, behaving 

like concentrated H3PO4 solution. Accordingly, ABPBI polymer acted as a solvent to 

ionise H3PO4 molecules by protonation of the imidazole groups. In pure H3PO4 acid, 

self-dissociation of anhydrous H3PO4 is represented by the following reactions221: 

 

fastPOHPOHPOH −+ +⇔ 4244432                  6-8 

 
In section 5.3, it was mentioned that the dimerisation of H3PO4 in 85% H3PO4 

solution occurred at around 158oC and produced pyrophosphoric acid (H4P2O7, 

equation 5-2), which is a very strong acid and has two dissociations to H3P2O7
- and 

H2P2O7
2-, thus equation 5-2 is always expressed as following 

 

slowOHOPHPOH +− +⇔ 3723432                  6-9 
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The first equilibrium (Equation 6-8) is labelled fast while the last (Equation 6-9) is 

labelled slow100, 221. Ma100 found that the formation of H4P2O7 in H3PO4 doped PBI 

membranes under dry conditions started around 140oC, depending on the acid doping 

level. Thus, the proton transfer path may be different above and below 140oC under 

dry conditions. It has been shown that H4P2O7 molecule has low mobility due to its 

large molecule size222. Therefore, the more slowly increasing conductivities of 

ABPBI/3AM with H3PO4 uptake above 117% between 140~160oC should be due to 

the dimerisation of excess H3PO4 producing pyrophosphoric acid, which has a slow 

dissociation reaction (Equation 6-9) and low mobility, leading to requiring higher 

reaction energy for proton transfer. Similar results were also reported in PBI with 

high H3PO4 doping levels100. 
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Figure 6-25 Hydrogen bonding forms proposed in a H3PO4 doped ABPBI membrane 

6.4.3 Effect of water on proton conductivity 

Figure 6-26 shows the proton conductivity of H3PO4 doped hydrous ABPBI-53PA 

measured at room temperature and ambient atmosphere with various exposure times. 

Figure 6-27, Figure 6-28 and Figure 6-29 show the proton conductivities of H3PO4 

doped hydrous ABPBI, ABPBI/AM and ABPBI/3SO samples measured at ambient 

atmosphere and various temperatures. The commercial Nafion 117 was measured in 

the same conditions and the related results are given in Figure 6-26 and Figure 6-27.  
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Figure 6-26 Conductivity of ABPBI-53PA and Nafion 117 at 20oC and ambient atmosphere 
against various exposure times 
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Figure 6-27 Conductivity of H3PO4 doped hydrous ABPBI and Nafion 117 at various 
temperatures 
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Figure 6-28 Conductivity of H3PO4 doped hydrous ABPBI/AM composites at various time 
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Figure 6-29 Conductivity of H3PO4 doped hydrous ABPBI/3SO composites at various 
temperatures 
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Figure 6-30 Comparison of conductivities of anhydrous and hydrous ABPBI/60PA, 
ABPBI/1AM-77PA and ABPBI/5AM-76PA samples measured above 100oC 
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Figure 6-31 Comparison of conductivities of anhydrous and hydrous ABPBI/3AM samples 
measured above 100oC 
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As shown in Figure 6-26, the conductivity of hydrous ABPBI-53PA decreased with 

the elapsed time. In Figure 6-27, the conductivities of H3PO4 doped ABPBI 

membranes first increased with the temperature increasing from 20 to 60oC (from 20 

to 80oC for ABPBI-102PA), and subsequently dropped down with the temperature 

increased to 100oC, then increased again with the continuously heightened 

temperature up to 160oC. It can also be seen that the reduction of conductivity of 

these H3PO4 doped ABPBI samples between 60 and 100oC seems to decrease with 

the increased H3PO4 uptake. In Figure 6-28, the conductivity increasing with the 

temperature rising from 20 to 160oC was observed in ABPBI/3AM-241PA sample 

and also observed in other ABPBI/3AM samples with the exception of a slight 

fluctuation, which occurred between 80 and 100oC. Quite similar to that of low 

H3PO4 absorbed ABPBI samples, the significant reduction of conductivities occurred 

between 60 and 100oC, which also decreased with the increasing H3PO4 uptake at 

this temperature range observed in H3PO4 doped ABPBI/3SO samples as shown in 

Figure 6-29. It can also be seen that both the conductivity of hydrous Nafion 117 

decreased with the exposure time (Figure 6-26) and the increased temperatures 

(Figure 6-27). 

 

As discussed in the hopping model (Equation 6-7) in the above section, quite similar 

to H3PO4 molecule, water acts as either a proton acceptor or a proton donor and the 

addition of water increases the number of charge carrier by forming hydrogen bonds 

(shown in Figure 6-25).  

 

At ambient atmosphere and room temperature i.e. 20oC, the water uptake of hydrous 

ABPBI-53PA (in Figure 6-26) decreased with the elapsed time due to the water 

evaporation. The related decreased conductivity with the elapsed time indicates that 

the decreased water uptake caused the reduction of the number of charge carriers in 

the membrane, leading to lower mobility and conductivity. In other words, the 

conductivity depends on the water content significantly in the membrane at low 

temperature. For example, the conductivity of ABPBI-53PA decreased two orders of 

magnitude from 2.1×10-3 to 2.6×10-5 whilst the water uptake dropped down from 

25.6 to 8.7%.  
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It is noted that the water uptake data was not possible to be obtained since the 

conductivity of hydrous membranes were measured in an oven during a whole 

heating process. However, from the all DSC and TGA curves shown in the earlier 

chapters, it can be seen that the free water started to evaporate from 60oC. Therefore, 

compared to the slight fluctuations at 80~100oC for those membranes with high 

H3PO4 uptake i.e. ABPBI-79PA and ABPBI-102PA (in Figure 6-26), 

ABPBI/3AM-88~241PA (in Figure 6-28), and the dramatic drops of conductivities 

from these membranes with low H3PO4 uptake i.e. ABPBI-36~60PA (in Figure 6-27), 

ABPBI/3SO-47~58PA (in Figure 6-29), it is indicated that the conductivity depends 

on water content significantly at low H3PO4 uptake. The higher water absorption in a 

membrane with low H3PO4 uptake has been illustrated in a model shown in Figure 

5-5.  

 

The effect on the conductivity from water was investigated at above 100oC through 

comparing conductivities of hydrous and anhydrous samples with the same H3PO4 

uptake at the same temperature. The results also show that the conductivity depends 

on water content significantly at low H3PO4 uptake at high temperature. For example, 

in Figure 6-30, the conductivities of hydrous ABPBI-60PA, ABPBI/1AM-77PA and 

ABPBI/5AM-76PA were higher by approximately one order of magnitude than those 

of anhydrous samples at the temperature range of 100~160oC. In Figure 6-31, the 

conductivities of anhydrous ABPBI/3AM-117~241PA samples were around 75~90% 

to that of hydrous samples at 100oC and much closed at 160oC, whilst the 

conductivity of anhydrous ABPBI/3AM-88PA was probably one-third to that of 

hydrous one at 100oC (4.8×10-3 vs 1.4×10-2S.cm-1) and became closed at 160oC 

(2.4×10-2 vs 2.5×10-2S.cm-1).  

 

It is interesting to mention that, as shown in Figure 6-27, the conductivity of water 

saturated ABPBI membrane with H3PO4 uptake above 79% is compatible at a wide 

temperature range i.e. between 20~160oC compared to that of saturated commercial 

Nafion 117 at 20oC. Meanwhile, the conductivity of ABPBI/3AM with H3PO4 uptake 

above 117% whenever at anhydrous or hydrous conditions at a wide temperature 

range as shown in Figure 6-17 and Figure 6-28, is comparable to saturated Nafion at 

20oC.  
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Chapter 7 CONCLUSIONS AND 

RECOMMENDATIONS FOR FUTURE WORK 

7.1 Conclusions 

The following conclusions can be drawn from the work conducted in this project: 

 

1. Poly(2,5-benzimidazole)(ABPBI), polybenzimidazole 

(poly[2,2’-(m-phenylene)-5,5’-bibenzimidazole], PBI) and copolymers of 

ABPBI and PBI were synthesised using methanesulfonic acid/phosphorus 

pentoxide (MSA/P2O5) as the reaction media. Their chemical structures were 

confirmed by FTIR spectra and elemental analysis. Among them, ABPBI 

showed the highest crystallinity and the thermal stability. The molecular weights 

of the polymers synthesised were affected by the reaction temperature and time, 

the concentration of monomer(s) and stirring conditions. ABPBI with a 

molecular weight of 18,000g/mol was obtained under the optimised reaction 

conditions (26.7 mmol of monomer 3,4-diaminobenzoic (DABA) in 40mL of 

MSA and 6.0g of P2O5 at 150oC for 120 minutes with around 400rpm of the 

stirring speed), which was adequate for the membrane preparation.  

 

2. By casting from MSA subsequently progressively heating to remove the solvent 

followed by a phosphoric acid (PA, H3PO4) solution doping procedure, qualified 

ABPBI membranes were fabricated and characterised. The tensile test results 

showed that the anhydrous ABPBI membrane with low H3PO4 uptake i.e. 53% 

possessed higher tensile strength and modulus probably due to the crosslink-like 

structures formed between polymer chains through imidazole-HPO4
2--imidazole 

bonds, in which, the presence of HPO4
2- was also confirmed by FTIR. XRD 

showed that the ABPBI membrane was semi-crystalline, which was reduced by 

the absorbed H3PO4 molecules. Due to the alkalinity of imidazole groups, 

ABPBI can be protonated by H3PO4 and absorb water via hydrogen bonding. 

The water and H3PO4 uptake results showed that, before imidazole groups in 

ABPBI were fully protonated by H3PO4, water molecules could be hydrogen 
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bonded with the unprotonated imidazole groups, but with H3PO4 molecules 

when the imidazole groups were fully protonated. The excess free H3PO4 

detected by FTIR was due to the hydrogen bonds formed between H3PO4 

molecules resulting in the increase of H3PO4 uptake with increase of H3PO4 

concentration as well as water uptake.  

 

3. ABPBI/OctaAmmonium POSS (AM-POSS) (ABPBI/AM) and 

ABPBI/TriSilanolPhenyl POSS (SO-POSS) (ABPBI/SO) composites were 

synthesised in situ in MSA/P2O5 media and direct cast to form membranes. The 

SEM/TEM micrographs and EDX maps showed that both AM-POSS and 

SO-POSS uniformly dispersed in polymer matrix through dissolving in selected 

solvent first followed by ultrasonication bath before synthesis. DSC results 

showed that the addition of POSS reduced the glass transition temperature of 

pristine ABPBI from 420oC to 300~350oC due to the enlargement of the distance 

between polymer chains by POSS particles. The significantly improved 

mechanical properties of 90% in tensile strength (>258MPa) and 60% in 

Young’s modulus (>4.5GPa), respectively for composite membranes were 

obtained by addition of 3 wt% AM-POSS attributed to the fine and uniform 

dispersion of the POSS particles in polymer matrix, which was also in favour of 

water and PA absorptions of the membranes. Both the H3PO4 and water uptake 

of ABPBI/AM and ABPBI/SO composites with 1~3 wt% POSS concentration 

were higher than those of the pristine ABPBI membrane at same conditions due 

to the hydrogen bonds formed between POSS and H3PO4 and water molecules, 

whilst the reduction in H3PO4 and water absorption for ABPBI/POSS with 5 

wt% POSS might result from the agglomeration of POSS particles. The highest 

H3PO4 uptake of 241% was achieved for 3 wt% ABPBI/AM membrane. 

 

4. The proton conductivity results showed that the conductivities of H3PO4 doped 

membranes increased with the increase of H3PO4 or water molecule absorbance. 

When the imidazole groups were fully protonated, the activation energy of 

proton transfer decreased with the increase of H3PO4 uptake resulted in the 

increase of proton conductivities. The ABPBI/3AM composite membrane with 

H3PO4 uptake above 117% showed excellent proton conductivity at high 

temperatures in both hydrous and anhydrous conditions, which was comparable 
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with commercial Nafion 117 (1.1S.cm-1 measured at 20oC and the water 

saturated condition), indicating that H3PO4 doped ABPBI/3AM composite 

membrane could be an excellent candidate as a polymer electrolyte membrane 

for the high temperature fuel cell purpose. 

7.2 Recommendations for Future work 

1. It has been reported that both the temperature and humidity affect the proton 

conductivity of the membranes. Due to the availability of the facilities, the 

proton conductivity was not measured at the controlled humidity condition. It 

would be appreciated if these conditions could be controlled in measuring 

conductivity, which will be very helpful and useful in understanding fully the 

proton transfer mechanisms in this new composite membrane system. 

 

2. For potential commercialisation of these new composite membranes, it will be 

necessary to test the conductivity of the membranes using membrane electrolyte 

assembly (MEA) system. Finally, the thermal stability / degradation of the 

membranes at high temperature should also be assessed. 
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