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One hallmark of aging is autofluorescence (AF) in the brain. However, the

underlying mechanism for inducing AF remains unknown. This study aims to

determine the cause(s) of this phenomenon. The endogenous expression pattern

of AF in mice was examined at differing ages. Intraperitoneal injection of a single

dose of lipopolysaccharide (LPS) was performed to induce AF. Copper sulfate

was applied to remove AF to allow for further immunofluorescence staining. AF

appeared in the mouse brain as early as 3 months of age. In the cortex, AF occurs

in the lysosomes of microglia, astrocytes, endothelial cells, and oligodendrocyte

lineage cells and its prevalence increases with age. Interestingly, AF never occurs

in the pericytes of young or aged brains. LPS administration resulted in a rapid

and marked induction of brain AF, similar to the normal aging process. Finally,

age-related and induced AF can be eliminated by low concentrations of copper

sulfate solution. This pre-treatment is safe for aging and lineage tracing studies.

These findings depict that AF in the brain could be associated with the innate

immune response against Gram-negative bacteria infection.
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1. Introduction

Lipofuscin is an age-related pigment abundant in neurons, myocytes, and skin cells.
Hannover first observed it in the cytosol of aging nerve cells in 1842 (Porta, 2002).
In addition to lipofuscin, elastin and porphyrins (found in red blood cells) are also
capable of autofluorescing. Typically, autofluorescence (AF) occurs in postmitotic cells,
especially normal aging neurons, in patients with pathological conditions, including
strokes and tumors (Zhang et al., 2022). AF can also be observed in the astrocytes of
damaged/traumatized brains and is a hallmark of cell senescence (Castejón, 2015). Skin AF
has been utilized to examine the association between type 2 diabetes and brain atrophy, yet
the pathogenesis of the AF has not been fully understood (Moran et al., 2015).

Lipofuscin is considered toxic as it is cellular waste that can be neither degraded
nor ejected from the cell. Therefore, AF from lipofuscin can result from oxidative stress
(Croce and Bottiroli, 2014). Lipofuscin formation appears to share the same mechanisms
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that cause aging (Terman and Brunk, 1998). Lipofuscin has an
emission wavelength between 460 and 630 nm, with a maximum
fluorescence intensity of approximately 578 nm (Moreno-García
et al., 2018). It is essential to understand how and where AF
develops in the brain to prevent it from interfering with staining
procedures. Red fluorescent proteins (RFPs) have been widely
utilized for labeling glial cells, such as astrocytes, in fate mapping.
This is partly because green fluorescent proteins (GFPs) are soluble
in water if not properly handled and fixed using paraformaldehyde
(Jockusch et al., 2003). Animals undergoing fate mapping must
be (i) genotyped and (ii) injected with tamoxifen (usually for five
consecutive days, followed by a gap of at least 8 days to exclude the
residual tamoxifen effects) (Valny et al., 2016; Shi et al., 2021). These
laboratory animals could become sufficiently mature to develop
endogenous AF. Lipofuscin fluorescence has been observed in
human neurons in patients as young as 3–4 months (Porta, 2002),
However, no such data is available in mice. A marked increase in AF
was observed in the macrophages of mice after the intraperitoneal
injection of tamoxifen suspended in the plant oil (Bulut et al., 2021).
However, a dramatic decrease in AF was observed when tamoxifen
was administered to the diet. Thus, the authors believed that the AF
was from the plant oil and then picked by macrophages.

It is reported that 70% of mouse microglia exhibit AF
as an aging function (Burns et al., 2020). Microglia actively
remove myelin debris; however, this debris increases with age,
leading to an increased burden on microglia to clear this
cellular waste. Instead of being expelled, the debris is isolated
by formatting lipofuscin-like lysosomal inclusions (Safaiyan et al.,
2016). AF pathogenesis in other cell types, including astrocytes,
oligodendrocytes, oligodendrocyte precursor cells (OPCs), and
blood vessel cells has received minimal attention. However, one
study found age-dependent AF granules in the mouse retinal blood
vessel (Xu et al., 2008). In addition, the intensity of cerebral
vascular AF was higher in Alzheimer’s disease (AD) patients than
in age-matched controls (Christov et al., 2008). Pathogen infection,
particularly by Gram-negative bacteria as one of the possible
etiologies for AD, has received growing attention (Zhan et al., 2018;
Lukiw et al., 2019). Lipopolysaccharide (LPS) are toxins found in
the outer layer membrane of Gram-negative bacteria. They can
be recognized by the transmembrane protein, toll-like receptor
4 (TLR-4), and the cytosolic receptor, cysteinyl aspartate specific
proteinase-11 (caspase-11). An LPS molecule is usually comprises
three components: the hydrophobic and toxic lipid A triggering
the endotoxin response; a core oligosaccharide; and an O-antigen
(Raetz and Whitfield, 2002). LPS originating from Escherichia coli
has been found in the cortex of both “normal” and AD human
brains. and it was localized in the peri-nuclear area of neuron-
like cells (Zhan et al., 2016). Furthermore, we investigated the
relationship between lipofuscin and LPS entry into the brain since
lipofuscin and brain LPS can be detected by periodic acid-Schiff
(PAS) staining (Benavides et al., 2002; Zhan et al., 2021).

This study determined the expression profile of AF in the brain
over time. The results indicated that AF appears in the cortex,
hippocampus, and hypothalamus of young mouse brains. Brain
AF was elicited with a single dose of LPS, administered through
intraperitoneal injection, resembling the AF from normal aging.
Finally, we optimized the copper sulfate method for eliminating AF
to improve the results of further immunofluorescence staining and
RFP-based lineage tracing.

2. Materials and methods

2.1. Animals

Male C57BL/6 mice (4 weeks, 6 weeks, 3 months, 6 months,
12 months, and 18 months) were purchased from Hangzhou
Ziyuan Inc., (Zhejiang, China) and housed at an animal facility.
All animals had unlimited access to food and water. To induce AF,
mice received 5 mg/kg LPS derived from E. coli 055: B5 (#ST1470,
Beyotime, Shanghai). Animal experiments were approved by
the Experimental Animal Ethics Committee of Zhejiang Ocean
University (# SCXK ZHE 2019-0031).

2.2. Immunohistochemistry and AF
detection

All mice were euthanized by using carbon dioxide
and transcardially perfused with saline, followed by
4% paraformaldehyde. Brain tissues were fixed in 4%
paraformaldehyde at 4◦C for 1 h; embedded in low-melt agarose
(k07711, KehBio Inc., Beijing) at 37◦C and sectioned by a
vibratome (ZQP-86, Zhisun Equipment Inc., Shanghai). Sections
were washed with phosphate-buffered saline (PBS), permeated
by 0.3% Triton X-100, and blocked by 1% bovine serum albumin
in a 24-well cell culture plate. For immunofluorescence staining,
tissue samples were incubated with primary antibodies (neuronal
nuclei, NeuN, 24307, CST; cluster of differentiation 11b, CD11b,
557394, BD Bio-sciences; glial fibrillary acidic protein, GFAP,
D262817, Sangon Biotech; cluster of differentiation 31, CD31,
550274, BD Biosciences; Sry-related high-mobility-group/HMG
box 10, Sox10, AF2698, Beyotime; platelet-derived growth factor
receptor-β, PDGFR-β, AF1042, R&D; lysosomal associated
membrane protein 1, LAMP1, ab208943, Abcam; β-amyloid 42,
Aβ42, GTX134510, Genetex) overnight at 4◦C. After washing three
times with PBS, immunofluorescence secondary antibodies (111-
095-003, 705-095-147, 112-095-003 Jackson ImmunoResearch)
were applied at room temperature for 1 h. Brain sections were
finally imaged using immunofluorescence microscopy (Olympus
BX41). For AF detection, rhodamine channel with an excitation
wavelength of 450–490 nm was selected. For 3,3’-diaminobenzidine
tetrahydrochloride (DAB) staining, tissues were incubated with
citrate-EDTA antigen retrieval solution (Beyotime, Shanghai) at
90◦C for 20 min, and then incubated with primary antibodies
(LPS core, WN1222-5, Hycult Biotech; Aβ42, ab201060, Abcam)
overnight at 4◦C. The samples were again washed three times
with PBS, after which DAB staining was performed in conjunction
with a polymer horseradish peroxidase detection kit (PK10006,
Proteintech) and imaged using light microscopy.

2.3. Western blotting

Fresh brain tissue was sonicated and lysed by
radioimmunoprecipitation assay (RIPA) buffer. Protein lysate
was separated by sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS-PAGE) and then transferred to a piece of
polyvinylidene difluoride (PVDF) membrane. The membrane was

Frontiers in Aging Neuroscience 02 frontiersin.org

https://doi.org/10.3389/fnagi.2023.1126273
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-15-1126273 March 14, 2023 Time: 15:22 # 3

Yang et al. 10.3389/fnagi.2023.1126273

incubated with lipid A (ab8467, Abcam) and α-Tubulin (T9026,
Sigma) antibodies overnight at 4◦C and then incubated with a
horseradish peroxidase-conjugated secondary antibody (115-
035-003, Jackson) for 1 h at room temperature. Finally, protein
bands were detected using an enhanced chemiluminescence (ECL)
solution and analyzed with Alphaview SA software from Fluor
Chem FC3 (ProteinSimple Inc., California, CA, USA). Western
blot analysis was performed using α-Tubulin as a control.

2.4. Prussian blue, immunoglobulin G
(IgG), and senescence β-galactosidase
(SA-β-Gal) staining

Prussian blue staining (Solarbio, Beijing) and senescence
β-galactosidase staining (Beyotime, Shanghai) were performed
following the manufacturer’s instructions. For IgG staining, tissues
were treated and stained using the same methodology described for
DAB staining, except for the incubation with primary antibodies.

2.5. Copper sulfate bleach of AF

Brain sections from 18 months old and 14 days post LPS
injection C57BL/6 mice were treated with varying concentrations
of copper sulfate for 1.5 h. Sections were then performed with
immunofluorescence staining. To assess the effects of copper
sulfate treatment on the fluorescence of RFP in a lineage tracing
system, Sox10-cre/ERT2 and tdTomato reporter mice (Jackson
Laboratories, Maine, ME, USA) were cross-bred. Tamoxifen was
injected into the offspring, using a dosage of 1 mg per mouse per
day for 3 days. The sample brains were harvested and sectioned
using the vibratome method described above.

2.6. Statistical analyses

Each experiment in this study was carried out in at least
triplicate. All quantified data are shown as mean ± standard
error (SE). Significance analysis uses one-way analyses of variance
(ANOVA) or Student’s t test. A p-value less than 0.05 (p < 0.05) was
considered statistically significant.

3. Results

3.1. AF of the brain is age dependent

To understand the timeline of AF development, the mouse
brains were examined at specific intervals (initially at 4 weeks,
6 weeks and then 3, 6, 12 and 18 months). AF was not identified
in the cortex, hippocampus, or hypothalamus at 4 weeks (data
not shown) and 6 weeks (Figure 1A), but was observed in
these structures in brains as young as 3 months (Figure 1B and
Supplementary Figure 1), which concurs with the findings of
Oenzil et al. (1994) in rats. AF increased with age (Figures 1B–E,
H). 0.3% ± 0.1%, 2.6% ± 0.4%, 10.4% ± 1.2%, and 19.1% ± 1.3%

cells in the cortex exhibited AF at the age of 3, 6, 12, and 18 months,
respectively. 40.7 ± 4.2% and 84.4 ± 0.8% of cortical neurons
could express AF at three and 18 months, respectively (arrows,
Figures 1F, G, I). AF was found in the blood vessel cells, indicating
that neuronal lipofuscin could not be the only AF source in young
and aged brains (arrowheads, Figures 1B–E).

3.2. AF is expressed in the lysosomes of
glial and endothelial cells in young and
aged brains

Immunofluorescence staining was performed to determine
any AF occurrence in glial and blood vessel cells. Among three-
month-old mice, 34.9% ± 3.4% CD11b+ microglia, 56.5% ± 1.7%
GFAP+ astrocytes, 14.6% ± 0.4% CD31+ endothelial cells, and
33.0% ± 4.0% Sox10+ oligodendrocyte lineage cells were co-
localized with AF (arrows, Figures 2A, C, D, F, G, I, J, L).
Therefore, these cells can develop AF as early as 3 months of age.
In aged brains, 68.1% ± 3.3% CD11b+ microglia, 63.5% ± 2.9%
GFAP+ astrocytes, 32.2% ± 2.0% CD31+ endothelial cells, and
52.4% ± 3.5% Sox10+ oligodendrocyte lineage cells were co-
localized with AF. Thus, the prevalence of AF positive microglia,
endothelial cells, and oligodendrocyte lineage cells significantly
increases with age. However, the propensity of astrocytes to exhibit
AF did not alter (arrows, Figures 2B, C, E, F, H, I, K, L).
Interestingly, PDGFR-β did not co-localize with AF in either young
or aged brains, indicating that pericytes are not responsible for AF
(Supplementary Figure 2). We did LAMP1 immunofluorescence
staining to determine which cellular structure produces AF. It was
observed that AF occurred in lysosomes, and 70.3% ± 8.1% and
78.8% ± 3.7% of lysosomes exhibited AF among young and aged
brains, respectively (arrows, Figures 2M–O).

3.3. A single dose of LPS induced brain AF

Lipofuscin is a substance positive for PAS staining. Recently, the
PAS method has been used for staining the polysaccharides of LPS
(Zhan et al., 2021). Therefore, we stained the brain tissue of normal
C57BL6 mice for lipid A and LPS core (polysaccharide component).
Lipid A was not observed in the cortex. Surprisingly, neuron-
like cells were positive for LPS core at 3 months (13.6% ± 0.4%
of the positive area), and the signal of the LPS core staining
significantly increased with age (25.7% ± 1.8% of the positive area
at 18 months, Figures 3A, I). At 4 weeks of age, the male C57BL6
mice received a single dose of LPS (5 mg/kg). The signal of the
LPS core staining significantly increased 14 days after LPS injection
(19.0% ± 1.1% of the positive area, Figures 3A, I), compared
to the staining at 3 months. AF induction could be seen in the
cortex, hippocampus, and hypothalamus at 3, 7, and 14 days after
injection. Meanwhile, AF was not observed in the control group
at any point or in the injection group one day after injection
(Figure 3J and Supplementary Figure 3). AF induction was found
in 34.6%± 2.0% NeuN, 39.4%± 2.5% CD11b, 27.4%± 3.0% GFAP,
25.8% ± 0.8% CD31, 17.8% ± 1.5% Sox10 positive neurons, glial
cells, and endothelial cells 7 days after LPS injection (Figure 3K
and Supplementary Figures 4A–E). In contrast, it was found
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FIGURE 1

Autofluorescence (AF) in the cortex of mouse brains at specific ages. The representative images of AF at 6 weeks (6W, A), 3 months (3M, B),
6 months (6M, C), 12 months (12M, D), 18 months of age (18M, E). Blood vessel-like AF was found at 3 months of age and older (arrowheads, B–E).
The representative images of AF (red) co-localized with NeuN (green) at 3 months and 18 months of age (arrows, F,G). Area percentage of AF at
different ages and in neurons at three and 18 months of age (H,I). The scale bar represents 20 µm. The data are represented as mean ± SE.
Significance analysis with one-way analyses of variance (ANOVA) followed by Tukey’s multiple comparisons test or t-test. **p < 0.01, ***p < 0.001.

in 54.8% ± 3.5% NeuN, 48.3% ± 2.5% CD11b, 53.4% ± 3.5%
GFAP, 34.7% ± 2.2% CD31, and 27.4% ± 1.5% Sox10 positive
neurons, glial cells, and endothelial cells 14 days after LPS
injection (Figures 3B–F, K). The induced AF was co-localized
with lysosomes, as with endogenous AF (Figures 3G, K and
Supplementary Figure 4F).

The Western blot of lipid A revealed that the LPS entered
the cortical parenchyma 1 day after LPS injection (Figure 3L).
Lipofuscin usually contains Aβ (Giaccone et al., 2011); thus,
we examined this LPS induction model with Aβ42 staining. In
the 14 days of LPS injected mice, Aβ42 was significantly over-
expressed than aged mice (Supplementary Figures 5F, G). Further
Aβ42 fluorescence indicated that induced Aβ42 co-localized with
AF (Figure 3H). However, we could not detect SA-β-Gal in
young, LPS-induced animals (Supplementary Figures 5A, C), even
though Aβ42 has been reported to increase SA-β-Gal in vitro (He
et al., 2013). However, we observed this phenomenon in aged mice
(Supplementary Figure 5B). Prussian blue staining and blood IgG
staining were performed to exclude the possibility of LPS-induced
artifacts including bleeding or blood clots (Sumbria et al., 2016).

A single dose injection of LPS did not increase bleeding, blood clots,
or vascular leakage (Supplementary Figures 5D, E).

3.4. Removal of AF by copper sulfate
pre-treatment did not affect
fluorescence labeling

Autofluorescence (AF) cannot be eliminated with solvents
such as ethanol, isopropanol, or xylene, excluding the possibility
that lipids solely induce AF. Other research indicates that AF
can be removed using a 10 mM copper sulfate solution (Schnell
et al., 1999; Potter et al., 2012). However, the AF-reducing
effect of copper sulfate at significantly high concentrations is an
unacceptable methodology for experiments requiring additional
immune labeling. We attempted to optimize this process by
increasing the copper sulfate incubation period but decreasing
its concentration. Since aged brains exhibit higher AF levels,
500 µM, 1 mM, 2 mM, and 5 mM copper sulfate solutions
were evaluated for eliminating AF in aged brains (18 months
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FIGURE 2

Autofluorescence (AF) expression in glial cells, blood vessels, and lysosomes of young and aged mice. The representative AF images (rhodamine
channel) co-localized with CD11b (A–C), GFAP (D–F), CD31 (G–I), Sox10 (J–L), and LAMP1 (M–O) among young (3M) and aged brains (18M). The
arrows depict fluorescence coincident with AF. The scale bars represent 40 µm (A,B,D,E,G,H) and 20 µm (J,K,M,N). The data are represented as
mean ± SE. Significance analysis with t-test. *p < 0.05, **p < 0.01, ***p < 0.001.
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FIGURE 3

Correlation between lipopolysaccharide (LPS) and AF within mouse brains. The representative images of LPS core staining of mouse brains at
3 months (3M) and 18 months (18M) of age and 14 days (14D) after LPS injection (A). LPS-induced AF (rhodamine channel) co-localized with NeuN
(B), CD11b (C), GFAP (D), CD31 (E), Sox10 (F), and LAMP1 (G). LPS-induced Aβ co-localized with AF (rhodamine channel) (H). The positive area
percentage of LPS core at 3 months (3M), 18 months (18M) of age, and 14 days after LPS injection (I). The area percentage of AF in 1 day (1D), 3 days
(3D), 7 days (7D), and 14 days (14D) LPS-injected mouse brain sections (J). The percentage of AF-positive cells 7 days (7D) and 14 days (14D) mice
after LPS injection (K). Western blot of lipid A of the cortex of 6 weeks old mice after LPS injection for 1 day and age-matched control (L). The arrows
indicate fluorescence coincident with AF. The scale bars represent 20 µm. The data are presented as the mean ± SE. Significance analysis with
one-way analyses of variance (ANOVA) followed by Tukey’s multiple comparisons test. *p < 0.5, **p < 0.01, ***p < 0.001.

of age) with an incubation period of 1.5 h. Only 5 mM copper
sulfate solution completely removed AF (Figure 4A). To remove
LPS-induced AF, 250 µM, 500 µM, 1 mM, and 2 mM copper
sulfate solutions were examined for eliminating the AF in the

mouse brains that had received LPS for 14 days. 500 µM copper
sulfate solution completely removed AF (Figure 4B). Then, we
investigated whether pre-treatment using copper sulfate affects
fluorescence labeling. Brain sections from Sox10-cre/ERT2/floxed
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FIGURE 4

The effects of copper sulfate pre-treatment on brain AF. Effect of different concentrations of copper sulfate on the amount of AF elimination in the
aged brain (18M), and representative image of complete elimination of AF at 5 mM (A). Effect of different concentrations of copper sulfate on the
amount of AF elimination in the 14 days of injection in lipopolysaccharide (LPS)-induced young brains (14D), and representative image of complete
elimination of AF as low as 500 µM (B). Red fluorescent protein (RFP) tdTomato was not affected by copper sulfate treatment (C). Brain sections
from aged mice (18M) were pre-treated using 5 mM copper sulfate for 1.5 h, and immunofluorescence staining was performed for detecting NeuN
(D), Iba-1 (E), and GFAP (F). The scale bars represent 20 µm. Significance analysis with one-way analyses of variance (ANOVA) followed by Tukey’s
multiple comparisons test. ***p < 0.001.

tdTomato mice were treated using a 5 mM copper sulfate solution
for 1.5 h. Fluorescence bleaching of tdTomato did not occur,
depicting that copper sulfate treatment is safe for RFP labeling
(Figure 4C). Additionally, brain sections from aged mice were pre-
treated using a 5 mM copper sulfate solution for 1.5 h. Additional
immunofluorescence staining was still available to detect NeuN,
Iba-1, and GFAP (Figures 4D–F).

4. Discussion

This study observed that AF appears as early as 3 months
of age in the mouse brain and prevalence increases with
age. AF is expressed in neurons, glia, and endothelial cells
except for pericytes. By injecting a single dose of LPS, we
demonstrated that AF was associated with systemic inflammation.
The procedure for eliminating AF was optimized for further
immunofluorescence labeling.

Over fixation could also bring AF (Pfeiffer et al., 2021), but
the AF of fixative origin seems unlikely since the tissues were
sectioned right after 1 h fixation using paraformaldehyde. IgG
DAB staining demonstrated that a single dose of LPS derived from
E. coli did not result in vascular leakage. In contrast, mice treated
with a 1 mg/kg dose of LPS derived from Salmonella typhimurium
showed cerebral micro-hemorrhages (Sumbria et al., 2016). This
discrepancy could be attributed to the type of LPS used. A similar
study established that mice receiving a single dose of 2 mg/kg LPS
from E. coli showed no IgG leakage from brain vasculature or
neurodegeneration (Bowyer et al., 2020).

The early AF emergence described that secondary antibodies
for the fluorescein isothiocyanate (FITC) channel seem more
suitable when conducting immunofluorescence labeling. Although
Sudan black B reduces AF, this treatment is not appropriate
for immunofluorescence detection as Sudan black B masks
fluorescence (data not represented).

The early occurrence of AF could explain for some
controversial phenomena, including astrocyte-to-neuron
conversion (Wang et al., 2021), OPC to astrocyte/neuron
conversion (Akay et al., 2021), and endothelial-to-mesenchymal
transition (Hong et al., 2018). RFP was frequently used in these
studies for fate mapping. However, AF can appear in all these cells
after genotyping and tamoxifen injection.

Neural/glial antigen 2 (NG2) glia involves OPCs and pericytes
since the proteoglycan NG2 is also a receptor for PDGF (Attwell
et al., 2016). Therefore, Sox10 was used in this study to differentiate
OPCs from pericytes. This is because Sox10 is a more specific
biomarker for oligodendrocyte lineage consequently, it is suitable
for labeling OPCs, myelinating oligodendrocytes, and newly
formed oligodendrocytes, compared to less specific markers, such
as oligodendrocyte transcription factor 2 (Olig2), platelet-derived
growth factor receptor-α (PDGFR-α), and NG2 (Zhang et al.,
2014). Pericytes appear to renew themselves slowly because the
lineage tracing system revealed that some unknown precursor cells
occasionally became pericytes in normal aging mice (Kang et al.,
2010). These pericytes may renew themselves faster under systemic
inflammation and therefore demonstrate no detectable AF.

Lipopolysaccharide (LPS)-challenged mice had many
macrophages near the blood vessels, which is one of the
characteristics of the normal aging brain (Allen et al., 2023). The
hyaline substance seen in the blood vessels of an aged chimpanzee
could be autofluorescent intracellular lipofuscin (Gilissen et al.,
2016). AF could relate to palmitoyl-protein thioesterases (PPT)
in the lysosome. Ppt1 mutation can cause neuronal ceroid
lipofuscinosis (NCL), a neurodegenerative disease (Gupta et al.,
2001). Interestingly, neuroinflammation showed up in the Ppt1
mutant mice produced by Jalanko et al. (2005) at 3 months of
age, which was before the occurrence of neurodegeneration.
Environmental bacteria can enter the blood circulation through the
lungs, skin, gut, and urinary tracts. Four types of Gram-negative
bacteria, E. coli, Pseudomonas aeruginosa, Klebsiella pneumoniae,
and Acinetobacter baumannii are responsible for up to 62%
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of bloodstream infections (Holmes et al., 2021). In addition, Gram-
negative E. coli has surpassed Gram- positive Staphylococcus aureus
as the most prevalent bacteria in the blood. It is partly due to the
overuse of antibiotics like penicillin. The mechanism by which LPS
gains access to the brain is unclear. Western blot cannot detect
free LPS with a molecular weight of 10 kDa in this study due to
the detection limit or LPS binding with other proteins (Vargas-
Caraveo et al., 2017). Generally, LPS-binding protein and cluster of
differentiation 14 (CD14) can help LPS bind TLR-4 and elicit innate
immune responses (Ryu et al., 2017). However, high mobility group
box-1 protein (HMGB1) and galactin-3 can also combine with LPS.
Unfortunately, the underlying mechanism for delivering LPS by
HMGB1 and galactin-3 is poorly understood (Thiéblemont and
Wright, 1997; Deng et al., 2018; Lo et al., 2021). Recently, a novel,
TLR-4-independent role of CD14 for cytosolic LPS sensing has
been discovered (Vasudevan et al., 2022). The presence of LPS in
the brain cortex had never been proved, despite numerous attempts
using fluorescence or radiolabeled LPS (Li and Blatteis, 2004; Banks
and Robinson, 2010). However, whether the LPS core is located in
the peri-nucleus area of cortical neurons can be determined.

A previous study has demonstrated that LPS increases Aβ in
transgenic mice with the Swedish mutation (K595N/M596L) of
amyloid precursor protein (APPswe) (Sheng et al., 2003). However,
LPS also increases Aβ42 in normal young adult mice. The virus
injection potential to induce AF was not evaluated in this study.
However, lipofuscin may be a part of the innate immune defense
system and that viral infection may induce AF (Lemelle et al., 2020).
Future studies, we will seek to determine the correlation between
viruses, AF, and neurodegeneration.
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