44 research outputs found

    Removal of 17α-ethynylestradiol from aqueous solutions by a hybrid PAC/UF process

    Get PDF
    This study investigated the removal of 17α-ethynylestradiol (EE2) from water using activated carbon adsorption and powdered activated carbon/ultrafiltration (PAC/UF). EE2 was easily adsorbed by PAC. The adsorption of EE2 fitted the Freundlich model well. The influences of initial EE2 concentration, filtration rate, PAC dose, natural organic matter (NOM), and sodium dodecyl benzene sulfonate (SDBS) were investigated. The EE2 concentration and filtration rate had no significant effect on EE2 removal, whereas the addition of PAC had a significant effect on EE2 removal. The removal rate of EE2 increased dramatically from 7.01% to 80.03% as the PAC dose was increased from 0 to 10 mg/L. Both SDBS and NOM decreased the EE2 removal efficiency. The removal efficiency of EE2 in the PAC/UF process decreased from 86.77% to 42.64% as the SDBS concentration was increased from 0 to 50 mg/L. It was concluded that activated carbon adsorption and PAC/UF can be used for the effective removal of EE2 from water.Keywords: 17-α-ethynylestradiol, adsorption, ultrafiltration, PAC/UF process, removal efficienc

    Newcastle Disease Virus V Protein Inhibits Cell Apoptosis and Promotes Viral Replication by Targeting CacyBP/SIP

    Get PDF
    Newcastle disease virus (NDV) has been classified by the World Organization for Animal Health (OIE) as a notable disease-causing virus, and this virus has the ability to infect a wide range of birds. V protein is a non-structural protein of NDV. V protein has been reported to inhibit cell apoptosis (Park et al., 2003a) and promote viral replication (Huang et al., 2003), however, the mechanisms of action of V protein have not been elucidated. In the present study, a yeast two-hybrid screen was performed, and V protein was found to interact with the CacyBP/SIP protein. The results of co-immunoprecipitation and immuno-colocalization assays confirmed the interaction between V protein and CacyBP/SIP. The results of quantitative-PCR and viral plaque assays showed that overexpression of CacyBP/SIP inhibited viral replication in DF-1 cells. Overexpression of CacyBP/SIP in DF-1 cells induced caspase3-dependent apoptosis. The effect of knocking down CacyBP/SIP by siRNA was the opposite of that observed upon overexpression. Moreover, it is known that NDV induces cell apoptosis via multiple caspase-dependent pathways. Furthermore, V protein inhibited cell apoptosis and downregulated CacyBP/SIP expression in DF-1 cells. Taken together, the findings of the current study indicate that V protein interacts with CacyBP/SIP, thereby regulating cell apoptosis and viral replication

    Research on Influence of Water-Cement Ratio on Reinforcement Effect for Permeation Grouting in Sand Layer

    No full text
    In order to study permeation grouting reinforcement effect in the sand layer, a set of grouting test device is developed, which consists of a power device, a pressure-bearing slurry tank, and several test frames. Compressive strength, deformation modulus, and permeability coefficient are selected to be the evaluation index of grouting reinforcement effect. Grouting reinforcement effect under different water-cement ratio of cement slurry and curing time were measured. Eventually, under laboratory conditions, fitting formulas have been obtained which describe the quantitative relationship between reinforcement effect of permeation grouting and water-cement ratio and curing time. Results show that water-cement ratio of slurry has obvious effect on grouting reinforcement effect. Mechanical performance and impermeability of the grouted body are negative-correlated with water-cement ratio. There are two different destruction patterns for the grouted body in uniaxial compression process: global destruction pattern at low water-cement ratio and local destruction pattern at high water-cement ratio. If cement slurry at high water-cement ratio is permeated into the sand layer, water bleeding phenomena will appear and lead to inhomogeneous performance of the grouted body, with lower performance in the upper part and higher performance in the lower part of the grouted body

    Updated Progress on Group II Intron Splicing Factors in Plant Chloroplasts

    No full text
    Group II introns are large catalytic RNAs (ribozymes) in the bacteria and organelle genomes of several lower eukaryotes. Many critical photosynthesis-related genes in the plant chloroplast genome also contain group II introns, and their splicing is critical for chloroplast biogenesis and photosynthesis processes. The structure of chloroplast group II introns was altered during evolution, resulting in the loss of intron self-splicing. Therefore, the assistance of protein factors was required for their splicing processes. As an increasing number of studies focus on the mechanism of chloroplast intron splicing; many new nuclear-encoded splicing factors that are involved in the chloroplast intron splicing process have been reported. This report reviewed the research progress of the updated splicing factors found to be involved in the splicing of chloroplast group II introns. We discuss the main problems that remain in this research field and suggest future research directions

    Factors Affecting UV/H2O2 Oxidation of 17α-Ethynyestradiol in Water

    No full text
    In this study, bench-scale experiments were conducted to examine the UV/H2O2 oxidation of 17α-ethynyestradiol (EE2) in water in a batch operation mode. The EE2 degradation exhibited pseudo-first-order kinetics, and the removal was ascribed to the production of hydroxyl radicals (•OH) by the UV/H2O2 system. Typically, the EE2 oxidation rate increased with increasing UV intensity and H2O2 dose, and with deceasing initial EE2 levels and solution pH. At EE20=650μg/L, UV intensity=154μW/cm2, H2O2=5mg/L, and neutral pH, the UV/H2O2 treatment was able to remove 90% of the EE2 content within 30min. Four anions commonly present in water were found to inhibit EE2 degradation to varying degrees: HCO3 -\u3eSO4 2-\u3eCl- \u3eNO3 -. Our results demonstrate that the described UV/H2O2 process is an effective method to control EE2 pollution in water

    Impacts of SiC Carrier and Nickel Precursor of NiLa/support Catalysts for CO2 Selective Hydrogenation to Synthetic Natural Gas (SNG)

    No full text
    The porous silicon carbide (b-SiC) carrier supported nickellanthanum based catalysts (NiLa/SiC) were synthesized via incipient-wetness impregnation by using two types of nickel salts as the precursor, for the selective hydrogenation of carbon dioxide (CO2 + 4H(2)-> CH4 + 2H(2)O). The alumina supported catalysts were also prepared and tested for comparison. The samples were characterized using TEM, TPR, XRD, SEM, TG-DTG techniques. Compared to the Al2O3 supported catalysts, the SiC supported catalysts were more resistant to sintering and carbon deposition due to the high thermal conductivity of SiC support. The relative weak metal-support interaction on Ni nanoparticles supported on SiC carrier resulted in the easy reduction of active species during the activation process. Meanwhile, the performances of the catalysts prepared from nickel acetate were better than those of using nickel nitrate, while enhanced nickel dispersion and better reducibility of the catalyst from nickel acetate werr evidenced by TEM, TPR and XRD results. Catalytic performances exhibited that Ni-Ac-La/SiC catalyst possessed the higher activity with 89.4% conversion of CO2 and almost 100% selectivity to methane with slight deactivation after 3000 min test under reaction conditions

    Comprehensive assessment of the utilization of manure in China’s croplands based on national farmer survey data

    No full text
    Abstract China’s rapid increase in mass excreta and its environmental discharge have attracted substantial attention. However, cropland as a main destination of excreta utilization has not been extensively evaluated. Here, a national survey was used to assess the utilization of manure in croplands across China. The data included the inputs of manure nitrogen (N), phosphorus (P), and potassium (K) for cereals, fruits, vegetables, and other crops, along with the manure proportion of total N, P, and K inputs at the county level. The results showed that the manure N, P, and K inputs were 6.85, 2.14, and 4.65 million tons (Mt), respectively, constituting 19.0%, 25.5%, and 31.1% of the total N, P, and K, respectively. The spatial distribution of the manure proportion of total inputs was lower in Eastern China and higher in Western China. The results provide a detailed description of the utilization of manure nutrients in agricultural areas throughout China, which will serve as basic support for policymakers and researchers involved in future agricultural nutrient management in China

    Synthesis of RGO/Cu@ FeAl<sub>2</sub>O<sub>4</sub> Composites and Its Applications in Electromagnetic Microwave Absorption Coatings

    No full text
    In order to satisfy the requirements of wide frequency bands, the lightweight and strong absorption for the electromagnetic wave absorbing materials, a uniform mixture of FeAl2O4 with RGO/Cu (reduction graphene oxide, RGO) was obtained by the mechanical mixing method, and composite coating was obtained by plasma spraying. The addition of RGO/Cu into FeAl2O4 is conducive to improve the dielectric properties and the impedance matching performance of spinel. When the RGO/Cu composite powders are doped by 10 wt.%, the reflection loss at 15 GHz is −16 dB and the absorption bandwidth is 2 GHz, indicating that the composite material has potential application value in the field of high-frequency wave absorption. The research on the electromagnetic wave absorption mechanism shows that its superior wave absorption performance is determined by the synergistic effect of multiple loss mechanisms such as interfacial polarization, dipole relaxation, natural resonance, exchange resonance, and eddy current loss
    corecore