114 research outputs found

    Comparison of long-term radial artery occlusion following trans-radial coronary intervention using 6-french versus 7-french sheaths

    Get PDF
    Background: The aim of this study was to explore the impact of 6-Fr and 7-Fr sheaths on the incidenceof long-term radial artery occlusion (RAO) after trans-radial coronary intervention (TRI).Methods: From September 2013 to January 2016, patients with ischemic heart disease includingacute myocardial infarction and true bifurcation lesions were randomly assigned to 6-Fr group and7-Fr group immediately after coronary angiography in a 1:1 ratio. The radial artery diameters wereobserved by ultrasound examination one day prior to TRI as well as at 30 days and 1 year after TRI.The primary endpoint was the incidence of RAO at 1-year after TRI. The secondary endpoints were theincidence of local vascular complications during hospitalization and changes of radial artery diameterswithin 1-year after TRI between the two groups. Additionally, multivariate logistic regression analysiswas used to explore potential factors related to the incidence of long-term RAO after TRI.Results: A total of 214 patients were enrolled and randomly assigned to 6-Fr group (n = 105) or7-Fr group (n = 109). There was no significant difference in the incidence of RAO at 1-year after TRI(8.57% vs. 12.84%, p = 0.313). Moreover, no significant difference was observed in the incidence of localvascular complications during hospitalization (20% vs. 24.77%, p = 0.403). After 1-year follow-up,no significant difference was found in radial artery diameters (2.63 ± 0.31 mm vs. 2.64 ± 0.27 mm,p = 0.802). Multivariate logistic analysis revealed that repeated TRI was an independent risk factor oflong-term RAO 1 year after TRI (OR = 10.316, 95% CI 2.928–36.351, p = 0.001).Conclusions: Compared to 6-Fr sheath, 7-Fr sheath did not increase short-term or long-term incidenceof RAO after TRI

    IRGen: Generative Modeling for Image Retrieval

    Full text link
    While generative modeling has been ubiquitous in natural language processing and computer vision, its application to image retrieval remains unexplored. In this paper, we recast image retrieval as a form of generative modeling by employing a sequence-to-sequence model, contributing to the current unified theme. Our framework, IRGen, is a unified model that enables end-to-end differentiable search, thus achieving superior performance thanks to direct optimization. While developing IRGen we tackle the key technical challenge of converting an image into quite a short sequence of semantic units in order to enable efficient and effective retrieval. Empirical experiments demonstrate that our model yields significant improvement over three commonly used benchmarks, for example, 22.9\% higher than the best baseline method in precision@10 on In-shop dataset with comparable recall@10 score

    Neutrino Physics with JUNO

    Get PDF
    The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purposeunderground liquid scintillator detector, was proposed with the determinationof the neutrino mass hierarchy as a primary physics goal. It is also capable ofobserving neutrinos from terrestrial and extra-terrestrial sources, includingsupernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos,atmospheric neutrinos, solar neutrinos, as well as exotic searches such asnucleon decays, dark matter, sterile neutrinos, etc. We present the physicsmotivations and the anticipated performance of the JUNO detector for variousproposed measurements. By detecting reactor antineutrinos from two power plantsat 53-km distance, JUNO will determine the neutrino mass hierarchy at a 3-4sigma significance with six years of running. The measurement of antineutrinospectrum will also lead to the precise determination of three out of the sixoscillation parameters to an accuracy of better than 1\%. Neutrino burst from atypical core-collapse supernova at 10 kpc would lead to ~5000inverse-beta-decay events and ~2000 all-flavor neutrino-proton elasticscattering events in JUNO. Detection of DSNB would provide valuable informationon the cosmic star-formation rate and the average core-collapsed neutrinoenergy spectrum. Geo-neutrinos can be detected in JUNO with a rate of ~400events per year, significantly improving the statistics of existing geoneutrinosamples. The JUNO detector is sensitive to several exotic searches, e.g. protondecay via the pK++νˉp\to K^++\bar\nu decay channel. The JUNO detector will providea unique facility to address many outstanding crucial questions in particle andastrophysics. It holds the great potential for further advancing our quest tounderstanding the fundamental properties of neutrinos, one of the buildingblocks of our Universe

    Potential of Core-Collapse Supernova Neutrino Detection at JUNO

    Get PDF
    JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve

    Detection of the Diffuse Supernova Neutrino Background with JUNO

    Get PDF
    As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30MM_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure

    Preliminary studies on diatoms from Lugu Lake

    No full text
    Lugu Lake is the third largest deep-water lake in China, the lake basin is complex in its shape, with many peninsulas, islets and bays. It has high habitat diversity and transparency which is up to 12.5 m. The water quality reaches Class I levels according to the Environmental Quality Standards for Surface Water(GB 3838-2002).A comprehensive survey of diatoms was made in Lugu Lake. A total of 111 taxa of diatoms were identified, including 103 species and 8 varieties, which belong to 2 classes, 6 orders, 10 families and 51 genera. And of these taxa 2 genera 2 species were newly recorded from China, namely Aneumastus minor and Placoneis humilis. For the two newly recorded species, the morphological characteristics, habitats and distributions were described in detail in this article
    corecore