24 research outputs found

    PMT-IQA: Progressive Multi-task Learning for Blind Image Quality Assessment

    Full text link
    Blind image quality assessment (BIQA) remains challenging due to the diversity of distortion and image content variation, which complicate the distortion patterns crossing different scales and aggravate the difficulty of the regression problem for BIQA. However, existing BIQA methods often fail to consider multi-scale distortion patterns and image content, and little research has been done on learning strategies to make the regression model produce better performance. In this paper, we propose a simple yet effective Progressive Multi-Task Image Quality Assessment (PMT-IQA) model, which contains a multi-scale feature extraction module (MS) and a progressive multi-task learning module (PMT), to help the model learn complex distortion patterns and better optimize the regression issue to align with the law of human learning process from easy to hard. To verify the effectiveness of the proposed PMT-IQA model, we conduct experiments on four widely used public datasets, and the experimental results indicate that the performance of PMT-IQA is superior to the comparison approaches, and both MS and PMT modules improve the model's performance

    Pathogenicity and functional analysis of CFAP410 mutations causing cone-rod dystrophy with macular staphyloma

    Get PDF
    BackgroundCone-rod dystrophy (CORD) caused by pathogenic variants in CFAP410 is a very rare disease. The mechanisms by which the variants caused the disease remained largely unknown. CFAP410 pathogenic variants were identified in a cone-rod dystrophy with macular staphyloma patient. We explored the pathogenicity and performed functional analysis of two compound heterozygous mutations.MethodsA 6-year-old boy complained decreased vision for 1 year, underwent ocular examinations together with systemic X-ray check. Blood sample was taken for targeted next generation sequencing (Tg-NGS). Pathogenicity of identified variants was determined by ACMG guideline. Mutated plasmids were constructed and transferred to HEK293T cells. Cell cycle, protein stability, and protein ubiquitination level was measured.ResultsThe best-corrected visual acuity of proband was 0.20 bilaterally. Fundus showed macular staphyloma and uneven granular pigment disorder in the periphery of the retina. SS-OCT showed thinning and atrophy of the outer retina, residual ellipsoid zone (EZ) in the fovea. Scotopic and photopic ERG responses severe reduced. Two heterozygous missense pathogenic variants, c.319 T > C (p.Tyr107His) and c.347 C > T (p.Pro116Leu) in exon 4 of the CFAP410, were found and were pathogenic by the ACMG guideline. In vitro, pathogenic variants affect cell cycle. Immunofluorescence and western blotting showed that the mutant proteins decreased expression levels protein stability. Meanwhile, co-IP data suggested that ubiquitination level was altered in cells transferred with the mutated plasmids.ConclusionCompound heterozygous pathogenic variants c.319 T > C and c.347 C > T in CFAP410 caused CORD with macular staphyloma. The pathogenic mechanisms may be associated with alternations of protein stability and degradation through the ubiquitin-proteasome pathway

    Overcomplete graph convolutional denoising autoencoder for noisy skeleton action recognition

    No full text
    Abstract Current skeleton‐based action recognition methods usually assume the input skeleton is complete and noise‐free. However, it is inevitable that the captured skeletons are incomplete due to occlusions or noisy due to changes in the environment. When dealing with these data, even State Of The Art (SOTA) recognition backbones experience significant degradation in recognition accuracy. Though a few methods have been proposed to address this issue, they still lack flexibility, efficiency and interpretability. In this work, an overcomplete Graph Convolutional Denoising Autoencoder (GCDAE) is proposed which can act as a flexible preprocessing module for pretrained recognition backbones and improve their robustness. Taking advantages of the overcomplete and fully graph convolutional structure, GCDAE is able to rectify noisy joints while keeping information of unspoiled details efficiently. On two large scale skeleton datasets NTU RGB+D 60 and 120, the introducing of GCDAE brings significant robustness improvements to SOTA backbones towards different types of noises

    A method for Absolute Protein Expression Quantity Measurement Employing Insulator RiboJ

    No full text
    Measuring the absolute protein expression quantity for a specific promoter is necessary in the fields of both molecular biology and synthetic biology. The strength of a promoter is traditionally characterized by measuring the fluorescent intensity of the fluorescent protein downstream of the promoter. Until now, measurement of the absolute protein expression quantity for a promoter, however, has been unsuccessful in synthetic biology. The fact that the protein coding sequence influences the expression level for different proteins, and the inconvenience of measuring the absolute protein expression level, present a challenge to absolute quantitative measurement. Here, we introduce a new method that combines the insulator RiboJ with the standard fluorescence curve in order to measure the absolute protein expression quantity quickly; this method has been validated by modeling verification. Using this method, we successfully measured nine constitutive promoters in the Anderson promoter family. Our method provides data with higher accuracy for pathway design and is a straightforward way to standardize the strength of different promoters. Keywords: RiboJ, Promoter measurement, Synthetic biolog

    Simultaneous Detection, Genotyping, and Quantification of Human Papillomaviruses by Multicolor Real-Time PCR and Melting Curve Analysis

    No full text
    Key Project of Science and Technology Program of Fujian [2009D024]Long-term infection with high-risk human papillomavirus (HPV) is the leading cause of cervical cancer, while infection with low-risk HPV is the major reason for condylomata acuminata. An accurate, rapid, and convenient assay that is able to simultaneously detect, genotype, and quantify HPV would be of great clinical value yet remains to be achieved. We developed a three-color real-time PCR assay that is able to analyze 30 predominant HPV types in three reactions. The amplification curves indicated the presence of HPV, melting curve analysis identified the HPV genotype, and the quantification cycle value determined the quantity. We applied this assay to 647 cervical swab samples, and the results were compared with those obtained with a commercial genotyping system. The proposed assay had a limit of detection of 5 to 50 copies per reaction and a dynamic range of 5 x 10(1) to 5 x 10(6) copies per reaction. A comparison study showed that the overall sample concordance with the comparison method was 91.6% and the type agreement was greater than 98.7%. The quantification study demonstrated that the loads of HPV type 16 in 30 samples with cervical intraepithelial neoplasia grade III (CIN III) lesions were significantly higher than those in samples with CIN I lesions or CIN II lesions, and the results were concordant with those of the comparison method. The increased information content, high throughput, and low cost would facilitate the use of this real-time PCR-based assay in a variety of clinical settings

    Development of Proton Conduction Membranes in Application of Vanadium Flow Battery

    No full text
    研究全钒液流电池的质子传导膜制备过程,提出高分子亲水/疏水相互作用诱导溶液相分离的成膜原理,进行制膜工艺放大,满足全钒液流电池的电堆制造与储能工程应用需要. 突破现有“离子交换”传质机理的限制,利用电解液中不同价态钒离子与氢离子相比,存在体积和荷电量的差异,通过离子“筛分”和“静电排斥”效应进行离子选择性渗透. 制成孔径分布在4 ~ 7 nm的聚偏氟乙烯质子传导膜,电导率为3.5×10-2 S•cm-1,爆破强度高于0.3 MPa,面积800 mm × 900 mm. 利用扩散实验测定膜对H+/VO2+离子选择性,选择性系数达到306. 利用该质子传导膜组装的15 kW电堆,充电/放电循环性能稳定,电流密度达到100 mA•cm-2,在700多个循环过程电流效率为93%,能量效率超过72%,具备产业化应用前景.The polymeric hydrophilic/hydrophobic interactions into membrane formation were introduced. A general and straightforward strategy for preparing membranes with nanometer-scale pores was suggested by utilization of hydrophilic/hydrophobic interactions to generate phase separation and removal of polyion aggregates through water immersion. Poly(vinylidene fluoride) (PVDF) and sodium allyl sulfonate (SAS) serve as the membrane material and pore-generator, respectively, resulting in chemically stable and oxidation-resistant membranes with various potential applications. Following the same procedure invented to produce the laboratory-scale membranes, the scale-up process to manufacture large-area membranes was completed. The obtained membrane exhibited the conductivity of 3.5×10-2 S•cm-1, thickness of 100 μm, bursting strength over 0.3 MPa and effective area of 800 mm × 900 mm. In order to investigate whether this membrane is capable of assembling vanadium flow battery (VFB) stack, the permeation selectivity for H+/VO2+ mixtures through the membranes, made from different pore-generator contents, were measured. Obviously, proton transports through membrane far faster than vanadium ion. Since the volume of H+ is much smaller than that of VO2+ in electrolyte, the difference in charge exclusion effect, which distinguishes from general ion exchange mechanism due to Donnan equilibrium effect, leads to the selectivity for H+/VO2+ up to 306. Using this nano-porous membrane, a 15 kW VFB stack was fabricated to evaluate the membrane performance for application. Generally, the stack test indicates that the membrane provided feasible proton permeation and rejection of vanadium ion, with average columbic efficiency of 93% and energy efficiency of 72% during the period of over 700 charge/discharge cycles, which shows promising market potential for electricity energy conversion and storage processes.国家自然科学基金项目(No. 21276134)和国家“863”项目(No. 2012AA051203)作者联系地址:清华大学化学工程系,北京 100084Author's Address: State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China通讯作者E-mail:[email protected]

    Data_Sheet_1_Pathogenicity and functional analysis of CFAP410 mutations causing cone-rod dystrophy with macular staphyloma.docx

    No full text
    BackgroundCone-rod dystrophy (CORD) caused by pathogenic variants in CFAP410 is a very rare disease. The mechanisms by which the variants caused the disease remained largely unknown. CFAP410 pathogenic variants were identified in a cone-rod dystrophy with macular staphyloma patient. We explored the pathogenicity and performed functional analysis of two compound heterozygous mutations.MethodsA 6-year-old boy complained decreased vision for 1 year, underwent ocular examinations together with systemic X-ray check. Blood sample was taken for targeted next generation sequencing (Tg-NGS). Pathogenicity of identified variants was determined by ACMG guideline. Mutated plasmids were constructed and transferred to HEK293T cells. Cell cycle, protein stability, and protein ubiquitination level was measured.ResultsThe best-corrected visual acuity of proband was 0.20 bilaterally. Fundus showed macular staphyloma and uneven granular pigment disorder in the periphery of the retina. SS-OCT showed thinning and atrophy of the outer retina, residual ellipsoid zone (EZ) in the fovea. Scotopic and photopic ERG responses severe reduced. Two heterozygous missense pathogenic variants, c.319 T > C (p.Tyr107His) and c.347 C > T (p.Pro116Leu) in exon 4 of the CFAP410, were found and were pathogenic by the ACMG guideline. In vitro, pathogenic variants affect cell cycle. Immunofluorescence and western blotting showed that the mutant proteins decreased expression levels protein stability. Meanwhile, co-IP data suggested that ubiquitination level was altered in cells transferred with the mutated plasmids.ConclusionCompound heterozygous pathogenic variants c.319 T > C and c.347 C > T in CFAP410 caused CORD with macular staphyloma. The pathogenic mechanisms may be associated with alternations of protein stability and degradation through the ubiquitin-proteasome pathway.</p

    Simultaneous Detection of Trisomies 13, 18, and 21 with Multiplex Ligation-Dependent Probe Amplification-Based Real-Time PCR

    No full text
    BACKGROUND: Trisomies 13, 18, and 21 account for the majority of chromosomal aneuploidies detected in prenatal diagnosis. Diagnosis of these trisomies relies mainly on karyotype analysis. Several molecular methods have been developed for trisomy detection, but performance or throughput limitations of these methods currently constrain their use in routine testing. METHODS: We developed multiplex ligation-dependent probe amplification-based real-time PCR (MLPA/rtPCR) to simultaneously detect these 3 trisomy conditions with a single reaction. We applied the method to DNA isolated from 144 blinded clinical samples that included 32 cases of trisomy 21, 11 cases of trisomy 18, 1 case of trisomy 13, and 100 unaffected control samples; results were compared with karyotype analysis. RESULTS: As judged by the results of the karyotype analysis, MLPA/rtPCR correctly detected all 44 cases of trisomy in the analysis of the blinded clinical samples. The method was able to detect a change in chromosome dosage as low as 1.2-fold. CONCLUSIONS: This novel PCR-based technology simultaneously identified 3 types of trisomy in a single reaction and accurately detected trisomy with mosaicism, while reducing assay times and costs compared with conventional methods. The MLPA/rtPCR approach may have applicability in noninvasive prenatal diagnosis with maternal blood samples. (C) 2010 American Association for Clinical ChemistryNatural Science Foundation of Fujian Province ; National High Technology Research and Development Program ("863" Program) of China [2009AA02Z114
    corecore