177 research outputs found

    Association of methylenetetrahytrofolate reductase (MTHFR) C677T and A1298C polymorphisms with the susceptibility of childhood acute lymphoblastic leukaemia (ALL) in Chinese population

    Get PDF
    BACKGROUND: The aim of this study was to investigate the relationship between the polymorphisms of the methylenetetrahytrofolate reductase (MTHFR) gene and susceptibility to childhood acute lymphoblastic leukemia (ALL). METHODS: A case–control study was conducted among 98 children with ALL and 93 age- and sex- matched non-ALL controls. Genotyping of MTHFR C677T and A1298C polymorphisms was performed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). The odds ratios (ORs) of MTHFR genotypes were used to assess the associations of these polymorphisms with childhood ALL susceptibility. RESULTS: No significant differences were observed for frequencies of the 677CC, 677CT and 677TT genotypes between patients and controls. Frequencies of the 1298AA, 1298 AC and 1298CC genotypes between the two groups were significantly different. The risk of ALL with the 1298C allele carriers (AC + CC) was elevated by 1.1 times compared with the AA genotype [OR = 2.100; 95% CI (1.149; 3.837); P = 0.015]. CONCLUSIONS: The MTHFR A1298C polymorphism is associated with susceptibility to childhood ALL in the Chinese population

    PuriDefense: Randomized Local Implicit Adversarial Purification for Defending Black-box Query-based Attacks

    Full text link
    Black-box query-based attacks constitute significant threats to Machine Learning as a Service (MLaaS) systems since they can generate adversarial examples without accessing the target model's architecture and parameters. Traditional defense mechanisms, such as adversarial training, gradient masking, and input transformations, either impose substantial computational costs or compromise the test accuracy of non-adversarial inputs. To address these challenges, we propose an efficient defense mechanism, PuriDefense, that employs random patch-wise purifications with an ensemble of lightweight purification models at a low level of inference cost. These models leverage the local implicit function and rebuild the natural image manifold. Our theoretical analysis suggests that this approach slows down the convergence of query-based attacks by incorporating randomness into purifications. Extensive experiments on CIFAR-10 and ImageNet validate the effectiveness of our proposed purifier-based defense mechanism, demonstrating significant improvements in robustness against query-based attacks

    Influence of precipitation on the Portevin-Le Chatelier effect in Al-Mg alloys

    Get PDF
    AbstractIn the alloy with solute content higher than the limiting solubility, the solute atoms that have failed to dissolve will precipitate from the solid solution and form precipitations. In this study, the Portevin-Le Chatelier (PLC) effects in annealed 5456 and 5052 aluminum alloys with different precipitation contents have been investigated under different applied strain rates. The results suggest that precipitations have significant effect on the PLC effect and the more the precipitations are, the greater the influence is. Furthermore, the solute diffusion is pipe diffusion in 5052 alloy with lower precipitation content. However, for 5456 alloy with higher precipitation content, the diffusion is no longer the case but more complex

    A Real-Time and Long-Term Face Tracking Method Using Convolutional Neural Network and Optical Flow in IoT-Based Multimedia Communication Systems

    Get PDF
    The development of the Internet of Things (IoT) stimulates many research works related to Multimedia Communication Systems (MCS), such as human face detection and tracking. This trend drives numerous progressive methods. Among these methods, the deep learning-based methods can spot face patch in an image effectively and accurately. Many people consider face tracking as face detection, but they are two different techniques. Face detection focuses on a single image, whose shortcoming is obvious, such as unstable and unsmooth face position when adopted on a sequence of continuous images; computing is expensive due to its heavy reliance on Convolutional Neural Networks (CNNs) and limited detection performance on the edge device. To overcome these defects, this paper proposes a novel face tracking strategy by combining CNN and optical flow, namely, C-OF, which achieves an extremely fast, stable, and long-term face tracking system. Two key things for commercial applications are the stability and smoothness of face positions in a sequence of image frames, which can provide more probability for face biological signal extraction, silent face antispoofing, and facial expression analysis in the fields of IoT-based MCS. Our method captures face patterns in every two consequent frames via optical flow to get rid of the unstable and unsmooth problems. Moreover, an innovative metric for measuring the stability and smoothness of face motion is designed and adopted in our experiments. The experimental results illustrate that our proposed C-OF outperforms both face detection and object tracking methods

    Overexpression of \u3ci\u3eMsDREB1C\u3c/i\u3e Modulates Growth and Improves Forage Quality in Tetraploid Alfalfa (\u3ci\u3eMedicago sativa\u3c/i\u3e L.)

    Get PDF
    DREB has been reported to be involved in plant growth and response to environmental factors. However, the function of DREB in growth and development has not been elucidated in alfalfa (Medicago sativa L.), a perennial tetraploid forage cultivated worldwide. In this study, an ortholog of MtDREB1C was characterized from alfalfa and named MsDREB1C accordingly. MsDREB1C was significantly induced by abiotic stress. The transcription factor MsDREB1C resided in the nucleus and had self-transactivation activity. The MsDREB1C overexpression (OE) alfalfa displayed growth retardation under both long-day and short-day conditions, which was supported by decreased MsGA20ox and upregulated MsGA2ox in the OE lines. Consistently, a decrease in active gibberellin (GA) was detected, suggesting a negative effect of MsDREB1C on GA accumulation in alfalfa. Interestingly, the forage quality of the OE lines was better than that of WT lines, with higher crude protein and lower lignin content, which was supported by an increase in the leaf–stem ratio (LSR) and repression of several lignin-synthesis genes (MsNST, MsPAL1, MsC4H, and Ms4CL). Therefore, this study revealed the effects of MsDREB1C overexpression on growth and forage quality via modifying GA accumulation and lignin synthesis, respectively. Our findings provide a valuable candidate for improving the critical agronomic traits of alfalfa, such as overwintering and feeding value of the forage

    Mitochondrial Genome of an 8,400-Year-Old Individual from Northern China Reveals a Novel Sub-Clade under C5d

    Get PDF
    Ancient DNA studies have always refreshed our understanding of the human past that can’t be tracked by modern DNA alone. Until recently, ancient mitochondrial genomic studies in East Asia are still very limited. Here, we retrieved the whole mitochondrial genome of an 8,400-year- old individual from Inner Mongolia, China. Phylogenetic analyses show that the individual belongs to a previously undescribed clade under haplogroup C5d that was most probably originated in northern Asia and may have a very low frequency in extant populations that is not yet sampled. We further characterized the demographic history of mitochondrial haplogroups C5 and C5d, and found that C5 experienced a sharp increase in population size starting from around 4,000 years before present (BP). The time when intensive millet farming was built by populations who are associated with the lower Xiajiadian culture and was widely adopted in northern China. We caution that people related to haplogroup C5 may added this farming technology to their original way of life and that the various subsistence may provide abundant food sources and may further contribute to the increase of the population size

    Expression of CIAPIN1 in human colorectal cancer and its correlation with prognosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The cytokine-induced anti-apoptotic molecule (CIAPIN1) had been found to be a differentially-expressed gene involved in a variety of cancers, and it was also considered as a candidate tumour suppressor gene in gastric cancer, renal cancer and liver cancer. However, studies on the role of CIAPIN1 in colorectal cancer were still unavailable. The aim of this study was to determine the prognostic impact of CIAPIN1 in 273 colorectal cancer (CRC) samples and to investigate the CIAPIN1 expression in CRC cell lines after inducing differentiation.</p> <p>Methods</p> <p>Immunohistochemical analysis was performed to detect the expression of CIAPIN1 in CRC samples from 273 patients. The relationship between CIAPIN1 expression and patients' characteristics (gender, age, location of cancer, UICC stage, local recurrence and tumour grade factors) was evaluated. In addition, these patients were followed up for five consecutive years to investigate the relationship between CIAPIN1 expression and the prognosis of CRC. We induced the differentiation of the CRC cell lines HT29 and SW480, in order to detect the expression of CIAPIN1 in the process of CRC cells differentiation.</p> <p>Results</p> <p>Results indicated that CIAPIN1 was mainly expressed in the cytoplasm and nucleus, and that its expression level in cancer samples was significantly lower than in normal tissues. The Wilcoxon-Mann-Whitney test showed a significant difference in the differential expression of CIAPIN1 in patients with different T and UICC stages, and tumour grade (<it>P </it>= 0.0393, 0.0297 and 0.0397, respectively). The Kaplan-Meier survival analysis demonstrated that the survival time of CRC patients with high expression of CIAPIN1 was longer than those with low expression during the 5-year follow up period (<it>P </it>= 0.0002). COX regression analysis indicated that low expression of CIAPIN1, cancer stage of > pT1, distant organ metastasis (pM<sub>1</sub>), regional lymph node metastasis (> pN<sub>1</sub>) and local recurrence (yes) were independent, poor prognostic factors of CRC (<it>P </it>= 0.012, <it>P </it>= 0.032, <it>P <</it>0.001, <it>P <</it>0.001, <it>P <</it>0.001 respectively). Both Western blotting and RT-PCR showed that CIAPIN1 expression was increased with the degree of differentiation of HT29 and SW480 cells.</p> <p>Conclusions</p> <p>CIAPIN1 played an important role in the differentiation of CRC cells, and the differential expression of CIAPIN1 in CRC was closely related to prognosis.</p

    Water depth affects submersed macrophyte more than herbivorous snail in mesotrophic lakes

    Get PDF
    IntroductionWater depth (WD) and snail abundance (SA) are two key factors affecting the growth of submersed aquatic plants in freshwater lake ecosystems. Changes in WD and SA drive changes in nutrients and other primary producers that may have direct or indirect effects on submersed plant growth, but which factor dominates the impact of both on aquatic plants has not been fully studied.MethodsTo investigate the dominant factors that influence aquatic plant growth in plateau lakes, a one-year field study was conducted to study the growth of three dominant submersed macrophyte (i.e., Vallisneria natans, Potamogeton maackianus, and Potamogeton lucens) in Erhai Lake.ResultsThe results show that, the biomass of the three dominant plants, P.maackianus, is the highest, followed by P.lucens, and V.natans is the lowest. Meanwhile, periphyton and snails attached to P.maackianus are also the highest. Furthermore, WD had a positive effect on the biomass of two submersed macrophyte species of canopy-type P.maackianus and P.lucens, while it had a negative effect on rosette-type V.natans. Snail directly inhibited periphyton attached on V.natans and thereby increasing the biomass of aquatic plants, but the effect of snails on the biomass of the other two aquatic plants is not through inhibition of periphyton attached to their plants.DiscussionThe dominant factors affecting the biomass of submersed macrophyte in Erhai Lake were determined, as well as the direct and indirect mechanisms of WD and snails on the biomass of dominant submersed macrophyte. Understanding the mechanisms that dominate aquatic plant change will have implications for lake management and restoration

    Seasonal variation and nutrient jointly drive the community structure of macrophytes in lakes with different trophic states

    Get PDF
    IntroductionMacrophytes are essential for maintaining the health of shallow lake ecosystems, however, the driving and responsive relationship between ecological factors (such as seasonal changes and nutrition, etc.) and plant communities is not yet clear.MethodsIn this study, we conducted seasonal surveys of macrophyte community composition in lakes with different nutrient states, aiming to understand the incidence relation between macrophyte community diversity, seasonal changes and environmental factors.ResultsAccording to the classification criteria of comprehensive nutritional index, there were significant differences in the trophic status of the three lakes. Among them, the Xihu Lake has reached mild eutrophication with a TLI value of 56.33, both Cibi Lake and Haixihai Lake are mesotrophic with TLI value of 36.03 and 33.48, respectively. The results of diversity analysis showed a significant negative correlation between α-diversity (include Species richness, Shannon-Wiener index, Simpson index and Pielou index) and lake nutrient status. Among them, Xihu Lake showed the lowest α-diversity in all seasons, Haixihai Lake exhibited the middle α-diversity, Cibi Lake indicated the highest α-diversity. Non-metric multidimensional ordination showed that there were obvious spatial structures differences among the macrophyte communities in the three lakes. Macrophyte community composition in the three lakes was more similar in summer and autumn, but there was a wider gap in spring and winter. The redundancy analysis indicated distinct differences between diversity index and ecological factors, the eigenvalues of Axis 1 and Axis 2 being, respectively, 36.13% and 8.15%. Environmental factors could explain 44.8% of the total variation in macrophyte communities structure. Among these, nitrogen, phosphorus, water transparency and water temperature contributed 50.2%, 3.5%, 3.8% and 27.5%, respectively.ConclusionsIn summary, the community structure of macrophytes in plateau shallow lakes is co-regulated by seasons and nutrients
    corecore