99 research outputs found
Evaluation of anti-TNF therapeutic response in patients with inflammatory bowel disease : Current and novel biomarkers
publishedVersio
Mitochondrial DNA Evidence for a Diversified Origin of Workers Building Mausoleum for First Emperor of China
Variant studies on ancient DNA have attempted to reveal individual origin. Here, based on cloning sequencing and polymerase chain reaction-restriction fragment length polymorphisms, we analyzed polymorphisms in the first hypervariable region and coding regions of mitochondrial DNA of 19 human bone remains which were excavated from a tomb near the Terra Cotta Warriors and dated some 2,200 years before present. With the aim of shedding light on origins of these samples who were supposed to be workers building the mausoleum for the First Emperor of China, we compared them with 2,164 mtDNA profiles from 32 contemporary Chinese populations at both population and individual levels. Our results showed that mausoleum-building workers may be derived from very diverse sources of origin
Capacitor Voltage Balancing Control of MMC Sub-Module Based on Neural Network Prediction
The issue of sub-module (SM) capacitor voltage unbalance is a hot topic in the current research into the modular multilevel converter (MMC). An excellent strategy comprises mitigating the SM capacitor voltage imbalance by adjusting the SM on time. The traditional capacitor voltage balancing control regulates the speed to maintain accuracy. A unique SM capacitor voltage balancing control strategy is presented in this paper and is based on conventional capacitor voltage balance management and neural network prediction. Firstly, the SM capacitor voltage and arm current are speculated by operating the time series forecasting technique in real time, considering the dynamic changes in the SM capacitor voltage and arm current. Secondly, the SM capacitor voltage distinction between the actual and theoretical value is determined, and a deviation’s mixed Gaussian distribution is established to estimate its compensation voltage. Thirdly, the SM triggering sequence is anticipated by using the neural network along with the pilot values of the SM capacitor voltage, arm current, and the offset compensation value, and the control is executed. Finally, a three-phase, six-leg, eight-module, nine-level MMC model is built to verify the feasibility of the suggested approach
Simulating the Coupling of Rural Settlement Expansion and Population Growth in Deqing, Zhejiang Province, Based on MCCA Modeling
Analyzing the relationship between rural settlements and rural population change under different policy scenarios is key in the sustainable development of China’s urban and rural areas. We proposed a framework that comprised the mixed land use structure simulation (MCCA) model and the human–land coupling development model to assess the spatiotemporal dynamic changes in rural settlements and its’ coupling relationship with the rural population in the economically developed region of Deqing, Zhejiang Province. The results showed that rural settlements and urban land increased by 14.36 and 29.07 km2, respectively, over the last 20 years. The expansion of some rural settlements and urban land occurred at the cost of cropland occupation. Rural settlements showed an expansion trend from 2000 to 2020, increasing from 42.69 km2 in 2000 to 57.05 km2 in 2020. In 2035, under the natural development scenario, the cropland protection scenario, and the rural development scenario, rural settlements are projected to show an expansion trend and Wukang and Leidian are the key regions with rural settlement expansion. The distance to Hangzhou, nighttime light data, distance to rivers, and precipitation are important factors influencing the expansion of rural settlements. The coupling relationship between rural settlements and the rural population developed in a coordinated manner from 2000 to 2020. For 2035, under different scenarios, the coupling relationship between rural settlements and the rural population showed different trends. In the rural development scenario, the highest number of towns with coordinated development between rural settlements and the rural population is in Deqing, predominantly with Type I coupling. Overall, an important recommendation from this study is that the sustainable development of regional land use can be promoted by controlling the occupation of cropland for urban and rural construction, balancing rural settlement expansion and rural population growth, and formulating land use policies that are more suitable for rural development
Land Cover Classification from Hyperspectral Images via Weighted Spatial-Spectral Kernel Collaborative Representation with Tikhonov Regularization
Precise and timely classification of land cover types plays an important role in land resources planning and management. In this paper, nine kinds of land cover types in the acquired hyperspectral scene are classified based on the kernel collaborative representation method. To reduce the spectral shift caused by adjacency effect when mining the spatial-spectral features, a correlation coefficient-weighted spatial filtering operation is proposed in this paper. Additionally, by introducing this operation into the kernel collaborative representation method with Tikhonov regularization (KCRT) and discriminative KCRT (DKCRT) method, respectively, the weighted spatial-spectral KCRT (WSSKCRT) and weighted spatial-spectral DKCRT (WSSDKCRT) methods are constructed for land cover classification. Furthermore, aiming at the problem of difficulty of pixel labeling in hyperspectral images, this paper attempts to establish an effective land cover classification model in the case of small-size labeled samples. The proposed WSSKCRT and WSSDKCRT methods are compared with four methods, i.e., KCRT, DKCRT, KCRT with composite kernel (KCRT-CK), and joint DKCRT (JDKCRT). The experimental results show that the proposed WSSKCRT method achieves the best classification performance, and WSSKCRT and WSSDKCRT outperform KCRT-CK and JDKCRT, respectively, obtaining the OA over 94% with only 540 labeled training samples, which indicates that the proposed weighted spatial filtering operation can effectively alleviate the spectral shift caused by adjacency effect, and it can effectively classify land cover types under the situation of small-size labeled samples
Land Cover Classification from Hyperspectral Images via Weighted Spatial–Spectral Joint Kernel Collaborative Representation Classifier
The continuous changes in Land Use and Land Cover (LULC) produce a significant impact on environmental factors. Highly accurate monitoring and updating of land cover information is essential for environmental protection, sustainable development, and land resource planning and management. Recently, Collaborative Representation (CR)-based methods have been widely used in land cover classification from Hyperspectral Images (HSIs). However, most CR methods consider the spatial information of HSI by taking the average or weighted average of spatial neighboring pixels of each pixel to improve the land cover classification performance, but do not take the spatial structure information for pixels into account. To address this problem, a novel Weighted Spatial–Spectral Joint CR Classification (WSSJCRC) method is proposed in this paper. WSSJCRC only performs spatial filtering on HSI through a weighted spatial filtering operator to alleviate the spectral shift caused by adjacency effect, but also utilizes the labeled training pixels to simultaneously represent each test pixel and its spatial neighborhood pixels to consider the spatial structure information of each test pixel to assist the classification of the test pixel. On this basis, the kernel version of WSSJCRC (i.e., WSSJKCRC) is also proposed, which projects the hyperspectral data into the kernel-induced high-dimensional feature space to enhance the separability of nonlinear samples. The experimental results on three real hyperspectral scenes show that the proposed WSSJKCRC method achieves the best land cover classification performance among all the compared methods. Specifically, the Overall Accuracy (OA), Average Accuracy (AA), and Kappa statistic (Kappa) of WSSJKCRC reach 96.21%, 96.20%, and 0.9555 for the Indian Pines scene, 97.02%, 96.64%, and 0.9605 for the Pavia University scene, and 95.55%, 97.97%, and 0.9504 for the Salinas scene, respectively. Moreover, the proposed WSSJKCRC method obtains the promising accuracy with OA over 95% on the three hyperspectral scenes under the situation of small-scale labeled samples, thus effectively reducing the labeling cost for HSI
Land Cover Classification from Hyperspectral Images via Weighted Spatial-Spectral Kernel Collaborative Representation with Tikhonov Regularization
Precise and timely classification of land cover types plays an important role in land resources planning and management. In this paper, nine kinds of land cover types in the acquired hyperspectral scene are classified based on the kernel collaborative representation method. To reduce the spectral shift caused by adjacency effect when mining the spatial-spectral features, a correlation coefficient-weighted spatial filtering operation is proposed in this paper. Additionally, by introducing this operation into the kernel collaborative representation method with Tikhonov regularization (KCRT) and discriminative KCRT (DKCRT) method, respectively, the weighted spatial-spectral KCRT (WSSKCRT) and weighted spatial-spectral DKCRT (WSSDKCRT) methods are constructed for land cover classification. Furthermore, aiming at the problem of difficulty of pixel labeling in hyperspectral images, this paper attempts to establish an effective land cover classification model in the case of small-size labeled samples. The proposed WSSKCRT and WSSDKCRT methods are compared with four methods, i.e., KCRT, DKCRT, KCRT with composite kernel (KCRT-CK), and joint DKCRT (JDKCRT). The experimental results show that the proposed WSSKCRT method achieves the best classification performance, and WSSKCRT and WSSDKCRT outperform KCRT-CK and JDKCRT, respectively, obtaining the OA over 94% with only 540 labeled training samples, which indicates that the proposed weighted spatial filtering operation can effectively alleviate the spectral shift caused by adjacency effect, and it can effectively classify land cover types under the situation of small-size labeled samples
- …