101 research outputs found

    Spectrum analysis of LTI continuous-time systems with constant delays: A literature overview of some recent results

    Get PDF
    In recent decades, increasingly intensive research attention has been given to dynamical systems containing delays and those affected by the after-effect phenomenon. Such research covers a wide range of human activities and the solutions of related engineering problems often require interdisciplinary cooperation. The knowledge of the spectrum of these so-called time-delay systems (TDSs) is very crucial for the analysis of their dynamical properties, especially stability, periodicity, and dumping effect. A great volume of mathematical methods and techniques to analyze the spectrum of the TDSs have been developed and further applied in the most recent times. Although a broad family of nonlinear, stochastic, sampled-data, time-variant or time-varying-delay systems has been considered, the study of the most fundamental continuous linear time-invariant (LTI) TDSs with fixed delays is still the dominant research direction with ever-increasing new results and novel applications. This paper is primarily aimed at a (systematic) literature overview of recent (mostly published between 2013 to 2017) advances regarding the spectrum analysis of the LTI-TDSs. Specifically, a total of 137 collected articles-which are most closely related to the research area-are eventually reviewed. There are two main objectives of this review paper: First, to provide the reader with a detailed literature survey on the selected recent results on the topic and Second, to suggest possible future research directions to be tackled by scientists and engineers in the field. © 2013 IEEE.MSMT-7778/2014, FEDER, European Regional Development Fund; LO1303, FEDER, European Regional Development Fund; CZ.1.05/2.1.00/19.0376, FEDER, European Regional Development FundEuropean Regional Development Fund through the Project CEBIA-Tech Instrumentation [CZ.1.05/2.1.00/19.0376]; National Sustainability Program Project [LO1303 (MSMT-7778/2014)

    A Real-Time Location-Based Services System Using WiFi Fingerprinting Algorithm for Safety Risk Assessment of Workers in Tunnels

    Get PDF
    This paper investigates the feasibility of a real-time tunnel location-based services (LBS) system to provide workers’ safety protection and various services in concrete dam site. In this study, received signal strength- (RSS-) based location using fingerprinting algorithm and artificial neural network (ANN) risk assessment is employed for position analysis. This tunnel LBS system achieves an online, real-time, intelligent tracking identification feature, and the on-site running system has many functions such as worker emergency call, track history, and location query. Based on ANN with a strong nonlinear mapping, and large-scale parallel processing capabilities, proposed LBS system is effective to evaluate the risk management on worker safety. The field implementation shows that the proposed location algorithm is reliable and accurate (3 to 5 meters) enough for providing real-time positioning service. The proposed LBS system is demonstrated and firstly applied to the second largest hydropower project in the world, to track workers on tunnel site and assure their safety. The results show that the system is simple and easily deployed

    Fluid-Structure Interaction Analysis of Parachute Finite Mass Inflation

    Get PDF
    Parachute inflation is coupled with sophisticated fluid-structure interaction (FSI) and flight mechanic behaviors in a finite mass situation. During opening, the canopy often experiences the largest deformation and loading. To predict the opening phase of a parachute, a computational FSI model for the inflation of a parachute, with slots on its canopy fabric, is developed using the arbitrary Lagrangian-Euler coupling penalty method. In a finite mass situation, the fluid around the parachute typically has an unsteady flow; therefore, a more complex opening phase and FSI dynamics of a parachute are investigated. Navier-Stokes (N-S) equations for uncompressible flow are solved using an explicit central difference method. The three-dimensional visualization of canopy deformation as well as the evolution of dropping velocity and overload is obtained and compared with the experimental results. This technique could be further applied in the airdrop test of a parachute for true prediction of the inflation characteristics

    Similar Fault Isolation of Discrete-Time Nonlinear Uncertain Systems: An Adaptive Threshold Based Approach

    Get PDF
    In this paper, a new concept of “similar fault” is introduced to the field of fault isolation (FI) of discrete-time nonlinear uncertain systems, which defines a new and important class of faults that have small mutual differences in fault magnitude and fault-induced system trajectories. Effective isolation of such similar faults is rather challenging as their small mutual differences could be easily concealed by other system uncertainties (e.g., modeling uncertainty/disturbances). To this end, a novel similar fault isolation (sFI) scheme is proposed based on an adaptive threshold mechanism. Specifically, an adaptive dynamics learning approach based on the deterministic learning theory is first introduced to locally accurately learn/identify the uncertain system dynamics under each faulty mode using radial basis function neural networks (RBF NNs). Based on this, a bank of sFI estimators are then developed using a novel mechanism of absolute measurement of fault dynamics differences. The resulting residual signals can be used to effectively capture the small mutual differences of similar faults and distinguish them from other system uncertainties. Finally, an adaptive threshold is designed for real-time sFI decision making. One important feature of the proposed sFI scheme is that: it is capable of not only isolating similar faults that belong to a pre-defined fault set (used in the training/learning process), but also identifying new faults that do not match any pre-defined faults. Rigorous analysis on isolatability conditions and isolation time is conducted to characterize the performance of the proposed sFI scheme. Simulation results on a practical application example of a single-link flexible joint robot arm are used to show the effectiveness and advantages of the proposed scheme over existing approaches

    IEEE Access Special Section: Recent Advances in Fault Diagnosis and Fault-Tolerant Control of Aerospace Engineering Systems

    Get PDF
    With the rapid development of automation technologies, aerospace engineering systems, including aircraft, satellite, and spacecraft, have become increasingly susceptible to system/component malfunctions. Failure to take appropriate responses to even relatively minor defects can result in highly destructive events. A conventional feedback control design may result in an unsatisfactory performance or even instability in the event of malfunctions. Because of this, fault diagnosis (FD) and fault-tolerant control (FTC) technologies that can ensure the safety of handicapped systems have attracted significant interest. FTC design and relevant techniques have provided a flexible framework for dealing with these challenges since the 1970s. There has been significant progress since the 1970s by the active research community, through symposiums and seminars, as well as the vast number of publications on the subject. The research illustrates that FD and FTC are effective and applicable in many engineering plants, especially for aerospace engineering systems. However, it still remains a challenging research area in applications relating to aircraft, spacecraft, and satellites

    Asymmetric system model parameters identification framework via relay feedback

    Get PDF
    This paper proposes an innovative framework of a parameter estimation procedure based on the well-established relay-feedback experiment paradigm. The novelty consists in consideration of asymmetric dynamics and non-equal static gains of the identified system. A different system behavior after changing the input variable polarity near the operating point is rarely considered or even omitted within relay-based parameter identification tests, in contrast to the common use of asymmetry in the nonlinear relay element. The thing is that many existing relay-based identification techniques in the frequency domain use integrations, assuming that the system output operating point coincides with the setpoint value (i.e., the offset between them is zero). However, this is not true for asymmetric dynamic systems, which yields considerably erroneous parameter estimation as the integration result is highly sensitive to the baseline value. The resulting iterative numerical optimization-based algorithm is built-up using a chain of natural assumptions and step-by-step thought experiments. The proposed framework is applied to the well-established exponential decaying method in this paper. Some computation aspects of the algorithm are discussed. A comparative numerical study illustrates the efficacy of the proposed strategy, where several frequency-fitting-based and descriptive-function-based competitive approaches are considered

    Time-delay stability switching boundary determination for DC microgrid clusters with the distributed control framework

    Get PDF
    In a DC microgrid cluster, distributed DC microgrids are integrated to manage diverse and distributed energy resources. Without the reliance on a management center, the distributed control framework is capable of the cluster deployment by only adjacent collaborations. However, the communication among microgrids and the formation of dispatch signals inevitably lead to time delays, which might cause the system disorder and multiple-delay couplings. Considering these unstable effects, the lack of time-delay study challenges the cluster stability and burdens the energy application. The key contributions of this paper are the definition and detection of the time-delay stability switching boundary for the DC microgrid cluster with the distributed control framework, which reveals time delays switching the system stability and proves the delay-induced oscillation. Through the established time-delay model and the proposed method based on the cluster treatment of characteristic roots, the explicit time-delay stability switching boundary is detected in the delay space, which forms a determination flow of five stages: (1) system initialization: according to the cluster parameter values, the established time-delay model is initialized; (2) space transformation: applying the space mapping and the rationalization, the Sylvester resultant is constructed in the spectral delay space; (3) spectral boundary sketch: in uniformly divided blocks, spectral boundaries are found from the resultant; (4) crossing root calculation: with the spectral boundaries, crossing roots are calculated solving the characteristic equation; (5) boundary determination: back-mapping the spectral boundaries with the crossing roots, the overall boundary is presented. Comprehensive case studies are performed to study the time-delay stability switching boundary and to validate the proposed approach. The boundary existence and feature demonstrate the time-delay effect. Furthermore, the classified stable areas are revealed as well as the relevant strategies for the stability enhancement. © 20182015AA050403; U1766210, NSFC, National Natural Science Foundation of China; 51377117, NSFC, National Natural Science Foundation of ChinaNational High-tech R&D Program of China [2015AA050403]; National Natural Science Foundation of China [U1766210, 51377117

    Clinical manifestations and imaging and pathological features of giant cell angioblastoma: Report of four cases and literature review

    Get PDF
    Giant cell angioblastoma is a relatively rare vasogenic tumour. To date, studies on its clinical manifestations, imaging characteristics, pathological features, and prognosis are extremely limited and unknown, with only a few cases recorded. In this study, four cases of giant cell angioblastoma confirmed by pathological examination were reported to improve our understanding and deep exploration of the tumour spectrum. All cases in our study were male, including two adults and two boys. The lesions were located in the lower segment of the femur, medial condyle of the femur, knee joint, and popliteal fossa. Regarding the imaging characteristics, two patients with lesions in bone showed bone destruction, while the other two had lesions that invaded soft tissues, showing irregular, abnormal signal shadows and obvious enhancement. Histopathological analysis revealed that the nodular tumour tissue was mainly composed of oval and spindle cells, with varying numbers of osteoclast-like multinucleated giant cells, and the interstitial tissues were often filled with blood vessels of different sizes. The immunophenotype demonstrates that endothelial cells of small vessels in nodules expressed CD31, SMA, and ERG, while osteoclast-like multinucleated giant cells and histiocytes expressed CD68 and CD163, and the surrounding cells expressed SMA. All four patients were treated with surgical resection. One of them relapsed 1 month after surgery and received a second surgical resection. No distant metastasis or death occurred during the follow-up period. This study indicates that giant cell angioblastoma is a local invasive vascular tumour that can develop both in children and adults with skin, mucous membrane, soft tissue, and bone involvement. Imaging characteristics show bone destruction and irregular, abnormal signal shadows; in addition, obvious pathological morphological features can be observed. Currently, the treatment is mainly surgical resection, and interferons may be used as adjuvant chemotherapy

    Misuse of Statistical Methods in 10 Leading Chinese Medical Journals in 1998 and 2008

    Get PDF
    Statistical methods are vital to biomedical research. Our aim was to find out whether progress has been made in the last decade in the use of statistical methods in Chinese medical research. We reviewed 10 leading Chinese medical journals published in 1998 and in 2008. Regarding statistical methods, using a multiple t-test for multiple group comparison was the most common error in the t-test in both years, which significantly decreased in 2008. In contingency tables, no significant level adjustment for multiple comparison significantly decreased in 2008. In ANOVA, over a quarter of articles misused the method of multiple pair-wise comparison in both years, and no significant difference was seen between the two years. In the rank transformation nonparametric test, the error of using multiple pair-wise comparison for multiple group comparison became less common. Many mistakes were found in the randomised controlled trial (56.3% in 1998; 67.9% in 2008), non- randomised clinical trial (57.3%; 58.6%), basic science study (72.9%; 65.5%), case study or case series study (48.4%; 47.2%), and cross-sectional study (57.1%; 44.2%). Progress has been made in the use of statistical methods in Chinese medical journals, but much is yet to be done

    Experimental investigation and control of a hot-air tunnel with improved performance and energy saving

    Get PDF
    The paper is focused on the identification, control design, and experimental verification of a two-input two-output hot-air laboratory apparatus representing a small-scale version of appliances widely used in the industry. A decentralized multivariable controller design is proposed, satisfying control-loop decoupling and measurable disturbance rejection. The proposed inverted or equivalent noninverted decoupling controllers serve for the rejection of cross-interactions in controlled loops, whereas open-loop antidisturbance members satisfy the absolute invariance to the disturbances. Explicit controller-structure design formulae are derived, and their equivalence to other decoupling schemes is proven. Three tuning rules are used to set primary controller parameters, which are further discretized. All the control responses are simulated in the Matlab/Simulink environment. In the experimental part, two data-acquisition, communication, and control interfaces are set up. Namely, a programmable logic controller and a computer equipped with the peripheral component interconnect card commonly used in industrial practice are implemented. A simple supervisory control and data acquisition human-machine interface via the Control Web environment is developed. The laboratory experiments prove better temperature control performance measured by integral criteria by 35.3%, less energy consumption by up to 6%, and control effort of mechanical actuator parts by up to 17.1% for our method compared to the coupled or disturbance-ignoring design in practice. It was also observed that the use of a programmable logic controller gives better performance measures for both temperature and air-flow control.Tomas Bata University in Zlin [RVO/CEBIA/2020/001]RVO/CEBIA/2020/001; Univerzita Tomáše Bati ve Zlín
    corecore