88 research outputs found

    Convergence Theorem for a Family of New Modified Halley’s Method in Banach Space

    Get PDF
    We establish convergence theorems of Newton-Kantorovich type for a family of new modified Halley’s method in Banach space to solve nonlinear operator equations. We present the corresponding error estimate. To show the application of our theorems, two numerical examples are given

    Research on a price prediction model for a multi-layer spot electricity market based on an intelligent learning algorithm

    Get PDF
    With the continuous promotion of the unified electricity spot market in the southern region, the formation mechanism of spot market price and its forecast will become one of the core elements for the healthy development of the market. Effective spot market price prediction, on one hand, can respond to the spot power market supply and demand relationship; on the other hand, market players can develop reasonable trading strategies based on the results of the power market price prediction. The methods adopted in this paper include: Analyzing the principle and mechanism of spot market price formation. Identifying relevant factors for electricity price prediction in the spot market. Utilizing a clustering model and Spearman’s correlation to classify diverse information on electricity prices and extracting data that aligns with the demand for electricity price prediction. Leveraging complementary ensemble empirical mode decomposition with adaptive noise (CEEMDAN) to disassemble the electricity price curve, forming a multilevel electricity price sequence. Using an XGT model to match information across different levels of the electricity price sequence. Employing the ocean trapping algorithm-optimized Bidirectional Long Short-Term Memory (MPA-CNN-BiLSTM) to forecast spot market electricity prices. Through a comparative analysis of different models, this study validates the effectiveness of the proposed MPA-CNN-BiLSTM model. The model provides valuable insights for market players, aiding in the formulation of reasonable strategies based on the market's supply and demand dynamics. The findings underscore the importance of accurate spot market price prediction in navigating the complexities of the electricity market. This research contributes to the discourse on intelligent forecasting models in electricity markets, supporting the sustainable development of the unified spot market in the southern region

    Numerical Analysis on the Joint Weakening Effect of Rock Mass Behaviors in Tension

    Get PDF
    AbstractThe presence of joints and other types of discontinuities has a significant effect on the mechanical properties of rock, especially for tensile properties to fundamentally influence the stability of rock excavations. The main challenge associated with the experimental research on jointed rock lies in the difficulty to carry out amount of direct tensile tests for analysis of the effect of joint geometric parameters on mechanical properties. In this study, a particle flow model was established by utilizing the flat-joint contact model (FJM) to represent the rock materials. After microscopic parameter calibration, 53 sets of the numerical model were used for investigating the relationship between jointed geometric parameters and tensile mechanical properties. The results show that the crack initiation is related to trace length l and joint angle β, and the tensile-shear crack will appear as β increase. The uniaxial tension strength σt and β had first a weak negative correlation and then a positive correlation as the β increases, which was consistent with mathematical calculations. Furthermore, the relative importance (RI) analysis showed that the β plays a decisive role among the joint geometric parameters for affecting σt, and the effect factors of σt were joint angle β, length l, density n, and aperture d in that order. The present research can be utilized for multiple purposes in the field of jointed rock engineering, such as prediction of surrounding rock instability analysis and estimating the variable values in the inversion analysis in practical engineering projects

    Comparison of the gut microbiota and untargeted gut tissue metabolome of Chinese mitten crabs (Eriocheir sinensis) with different shell colors

    Get PDF
    IntroductionThe Chinese mitten crab (Eriocheir sinensis) is a highly valued freshwater crustacean in China. While the natural shell color of E. sinensis is greenish brown (GH), we found a variety with a brownish-orange shell color (RH). Although RH is more expensive, it exhibits a lower molting frequency and growth rate compared with GH, which significantly reduces its yield and hinders large-scale farming. The growth and development of animals are closely related to their gut microbiota and gut tissue metabolic profiles.MethodsIn this study, we compared the gut microbiome communities and metabolic profiles of juvenile RH and GH crabs using 16S rRNA gene sequencing and liquid chromatography–mass spectrometry (LC–MS), respectively.ResultsOur findings indicated that the intestinal microbial composition and metabolic characteristics of E. sinensis differed significantly between RH and GH. At the operational taxonomic unit (OTU) level, the α-diversity of the gut microbiota did not differ significantly between RH and GH, while the β-diversity of the RH gut microbiota was higher than that of the GH gut microbiota. At the species level, the richness of unclassified_c_Alphaproteobacteria was significantly higher in the GH group, while the RH group had a significantly higher richness of three low-abundance species, Flavobacteria bacterium BAL38, Paraburkholderia ferrariae, and uncultured_bacterium_g__Legionella. In the current study, 598 gut tissue metabolites were identified, and 159 metabolites were significantly different between GH and RH. The metabolite profile of RH was characteristic of a low level of most amino acids and lipid metabolites and a high level of several pigments compared with that of GH. These metabolites were enriched in 102 KEGG pathways. Four pathways, including (1) Central carbon metabolism in cancer, (2) protein digestion and absorption, (3) alanine, aspartate and glutamate metabolism, and (4) aminoacyl-tRNA biosynthesis, were significantly enriched. The correlation analysis between metabolites and microbiotas indicated that most key differential metabolites were positively correlated with the abundance of Shewanella_sp_MR-7.DiscussionThis research provided a greater understanding of the physiological conditions of E. sinensis varieties with different shell colors by comparing the gut microbiota and gut tissue metabolome

    HO-1 Is Essential for Tetrahydroxystilbene Glucoside Mediated Mitochondrial Biogenesis and Anti-Inflammation Process in LPS-Treated RAW264.7 Macrophages

    Get PDF
    2,3,5,4′-Tetrahydroxystilbene-2-O-β-D-glucoside (TSG), an important monomer extracted from Polygonum multiflorum, can prevent a number of inflammation associated chronic diseases. However, the mechanism involved in TSG inducing anti-inflammatory role remains unclear. As an inducible antioxidant enzyme, Heme oxygenase-1 (HO-1), is crucial for protecting the mammalian cells against adverse stimuli. Here, we found that the TSG treatment strongly induces the expression of HO-1 in an NRF2-depended manner. Meanwhile, TSG increased the mitochondrial mass through upregulation of the mitochondrial biogenesis activators (PGC-1α, NRF1, and TFAM) as well as the mitochondrial complex IV. Furthermore, TSG attenuated Lipopolysaccharide (LPS) mediated RAW264.7 cells activation and secretion of proinflammatory cytokines, including interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). Zinc Protoporphyrin (ZnPP), a selective inhibitor of HO-1 activity, was able to attenuate TSG mediated mitochondrial biogenesis and anti-inflammatory process. Finally, we observed that LPS induced obvious mtDNA depletion and ATP deficiency, which indicated a severe damage of mitochondria. TSG restored the LPS induced mitochondrial dysfunction via activation of the mitochondrial biogenesis. ZnPP treatment markedly reversed the inhibitory effects of TSG on mitochondrial damage and oxidative stress in LPS stimulated macrophages. Taken together, these findings suggest that TSG enhances mitochondrial biogenesis and function mainly via activation the HO-1. TSG can be developed as a potential drug for treatment of inflammatory diseases

    Crystal Growth, Structure Determination and Physical Property of Complex Oxides

    No full text
    The discovery of new materials with potentially interesting properties is significant in order to allow for the study of structure-property relationships. We aim to discover new materials via the growth of single crystals. Flux crystal growth has several advantages over other methods, including low reaction temperatures and easy reaction setup. Novel Fe, Co, Rh, Hf and Ln containing oxides have been synthesized from molten hydroxide fluxes. Their crystal structures were solved by single crystal X-ray diffraction, and their magnetic and electrical properties have been studied. Unconventional magnetism was found in the new compound Ba4KFe3O9. A group of one-dimensional oxides belonging to the 2H-perovskite related family were synthesized. Sr5Co4O12, one member of the 2H-perovskite related family, exhibits a complicated interplay among valences, crystal structure, and magnetism. Several high oxidation state oxides, including Sr2-xLnxFeO4 (Ln = Nd, Sm, Eu), SrTbO3, and BaTbO3, have been successfully crystallized from molten hydroxides, thanks to the highly oxidizing nature of molten hydroxides. Additionally, two potassium hafnates were crystallized in open and sealed reaction vessels, respectively, under otherwise identical reaction conditions, indicating the important role of water content in molten hydroxide synthesis
    • …
    corecore