28 research outputs found

    The Effect of Zhongyong Thinking on Remote Association Thinking: An EEG Study

    Get PDF
    The Doctrine of the Mean (zhongyong) introduced by Confucianism is not only an aspect of faith, but also a way of thinking for Chinese individuals. Zhongyong includes two thinking forms: eclectic thinking (ET; i.e., “neither-A-nor-B”) and integrated thinking (IT; i.e., “both-A-and-B”). Given the inclination of Asian individuals toward situational cognition, this study used questions about situations familiar to Chinese undergraduates to activate either ET or IT. This was done to investigate the effects of the two divergent thinking forms of zhongyong on performance levels on the Remote Associates Test (RAT). Both behavioral and EEG results found that participants in the IT condition demonstrated higher RAT scores than those in the ET condition. The conclusion was that the RAT and priming tasks shared the same neural mechanism. This meant that the priming tasks of IT allowed participants to enter a state of creative preparation in advance, further affecting resolution of the RAT

    People got lost in solving a set of similar problems

    No full text
    A mental set generally refers to the human brain's tendency to persist with a familiar solution and stubbornly ignore alternatives. However, if a familiar solution is unable to solve a problem similar to a previous problem, does it continue to hinder alternative solutions, and if so, how and why? To answer these questions, a Chinese character decomposition task was adopted in this study. Participants were asked to perform a practice problem that could be solved by a familiar loose chunk decomposition (LCD) solution followed by a test problem that was similar to the practice problem but could only be solved by an unfamiliar tight chunk decomposition (TCD) solution or were asked to repeatedly perform 3-5 practice problems followed by a test problem; the former is the base-set condition, and the latter is the enhanced-set condition. The results showed that the test problem recruited more activation of the inferior frontal gyrus (IFG), middle occipital cortex (MOG), superior parietal lobule (SPL) and dorsal anterior cingulate cortex (dACC) than the practice problem in the latter operation and verification stage, but almost equal activation of the dACC occurred in the early exploration stage. This likely implied that people did not think that the familiar but currently invalid LCD solution could not be used to solve the test problem; thus, it continuously competed for attention with the unfamiliar TCD solution, which required more executive control to suppress. Moreover, compared with the base-set condition, the test problem in the enhanced-set condition recruited greater activations of the IFG, SPL and dACC in the latter verification stage but less activations of regions in the left IFG and MOG in the early exploration stage. These results revealed that people less actively explored and had to work harder to operate the unfamiliar TCD solution, particularly to resolve competition from the familiar but currently invalid LCD solution. In conclusion, people lost the ability to identify errors in the familiar but currently invalid solution, which in turn decreased the exploration efforts and increased the processing demands associated with alternative solutions in the form of attentional bias and competition. This finding broadly explains the dilemma of creative problem solving

    Attentional scope is reduced by Internet use: A behavior and ERP study

    No full text
    <div><p>As a crucial living environment, the Internet shapes cognition. The Internet provides massive information that can be accessed quickly via hyperlinks, but the information is typically fragmentary and concrete rather than integrative. According to construal level theory, the processing of this concrete and fragmentary information, should reduce attentional scope. Two experiments were conducted to test this hypothesis. In Experiment 1, three groups of participants were asked to shop online, read magazines or have a rest respectively, and a divided attention Navon-letter task was employed to measure the attentional scope before and after the assigned activity. It was found that the difference between reaction times in response to local vs. global targets was decreased only after Internet use, while there was no decrease in either the reading or resting group. In Experiment 2, the same procedure was used, and EEG/ERP methods were used to record both behavioral response and neural activity. Results showed that before the assigned activity, there was no significant difference in N2 amplitude in response to local vs. global targets in any of the three groups; during the activity, the lower-alpha activity induced by Internet use was significantly lower than that induced by reading or resting; after the activity, correspondingly, a more negative N2 wave was induced by the global than local targets only in the Internet group, while there were no significant differences in the other groups. Consistent with construal level theory, the results suggest that when surfing the Internet, attentional scope is reduced, and this effect might continue after Internet activity.</p></div

    ERP waveforms and topography in each group.

    No full text
    <p>ERP waveforms on F5 site for global letters and local letters during pretest and posttest session in each group, and topography of the effect of time on task on the difference in N2 amplitude between the pretest and posttest session on target letter type effect (global letters minus local letters) in each group.</p

    Task related power (TRP) changes during priming task in each group.

    No full text
    <p>Task related power (TRP) changes during priming task in each group.</p

    Reaction times for global and local letters during pretest and posttest session in each group.

    No full text
    <p>Reaction times for global and local letters during pretest and posttest session in each group.</p

    Dynamic neural network of insight: a functional magnetic resonance imaging study on solving Chinese 'chengyu' riddles.

    Get PDF
    The key components of insight include breaking mental sets and forming the novel, task-related associations. The majority of researchers have agreed that the anterior cingulate cortex may mediate processes of breaking one's mental set, while the exact neural correlates of forming novel associations are still debatable. In the present study, we used a paradigm of answer selection to explore brain activations of insight by using event-related functional magnetic resonance imaging during solving Chinese 'chengyu' (in Chinese pinyin) riddles. Based on the participant's choice, the trials were classified into the insight and non-insight conditions. Both stimulus-locked and response-locked analyses are conducted to detect the neural activity corresponding to the early and late periods of insight solution, respectively. Our data indicate that the early period of insight solution shows more activation in the middle temporal gyrus, the middle frontal gyrus and the anterior cingulate cortex. These activities might be associated to the extensive semantic processing, as well as detecting and resolving cognitive conflicts. In contrast, the late period of insight solution produced increased activities in the hippocampus and the amygdala, possibly reflecting the forming of novel association and the concomitant "Aha" feeling. Our study supports the key role of hippocampus in forming novel associations, and indicates a dynamic neural network during insight solution
    corecore