2,280 research outputs found

    Prediction-error of Prediction Error (PPE)-based Reversible Data Hiding

    Full text link
    This paper presents a novel reversible data hiding (RDH) algorithm for gray-scaled images, in which the prediction-error of prediction error (PPE) of a pixel is used to carry the secret data. In the proposed method, the pixels to be embedded are firstly predicted with their neighboring pixels to obtain the corresponding prediction errors (PEs). Then, by exploiting the PEs of the neighboring pixels, the prediction of the PEs of the pixels can be determined. And, a sorting technique based on the local complexity of a pixel is used to collect the PPEs to generate an ordered PPE sequence so that, smaller PPEs will be processed first for data embedding. By reversibly shifting the PPE histogram (PPEH) with optimized parameters, the pixels corresponding to the altered PPEH bins can be finally modified to carry the secret data. Experimental results have implied that the proposed method can benefit from the prediction procedure of the PEs, sorting technique as well as parameters selection, and therefore outperform some state-of-the-art works in terms of payload-distortion performance when applied to different images.Comment: There has no technical difference to previous versions, but rather some minor word corrections. A 2-page summary of this paper was accepted by ACM IH&MMSec'16 "Ongoing work session". My homepage: hzwu.github.i

    Detecting monopole charge in Weyl semimetals via quantum interference transport

    Get PDF
    Topological Weyl semimetals can host Weyl nodes with monopole charges in momentum space. How to detect the signature of the monopole charges in quantum transport remains a challenging topic. Here, we reveal the connection between the parity of monopole charge in topological semimetals and the quantum interference corrections to the conductivity. We show that the parity of monopole charge determines the sign of the quantum interference correction, with odd and even parity yielding the weak anti-localization and weak localization effects, respectively. This is attributed to the Berry phase difference between time-reversed trajectories circulating the Fermi sphere that encloses the monopole charges. From standard Feynman diagram calculations, we further show that the weak-field magnetoconductivity at low temperatures is proportional to +B+\sqrt{B} in double-Weyl semimetals and −B-\sqrt{B} in Weyl semimetals, respectively, which could be verified experimentally.Comment: published versio

    Better synchronizability predicted by a new coupling method

    Full text link
    In this paper, inspired by the idea that the hub nodes of a highly heterogeneous network are not only the bottlenecks, but also effective controllers in the network synchronizing process, we bring forward an asymmetrical coupling method where the coupling strength of each node depends on its neighbors' degrees. Compared with the uniform coupled method and the recently proposed Motter-Zhou-Kurth method, the synchronizability of scale-free networks can be remarkably enhanced by using the present coupled method.Comment: 6 pages, 6 figures; to be published in EPJ

    Dynamical Computation on Coefficients of Electroweak Chiral Lagrangian from One-doublet and Topcolor-assisted Technicolor Models

    Full text link
    Based on previous studies deriving the chiral Lagrangian for pseudo scalar mesons from the first principle of QCD, we derive the electroweak chiral Lagrangian and build up a formulation for computing its coefficients from one-doublet technicolor model and a schematic topcolor-assisted technicolor model. We find that the coefficients of the electroweak chiral Lagrangian for the topcolor-assisted technicolor model are divided into three parts: direct TC2 interaction part, TC1 and TC2 induced effective Z' particle contribution part, and ordinary quarks contribution part. The first two parts are computed in this paper and we show that the direct TC2 interaction part is the same as that in the one-doublet technicolor model, while effective Z' contributions are at least proportional to the p^2 order parameter \beta_1 in the electroweak chiral Lagrangian and typical features of topcolor-assisted technicolor model are that it only allows positive T and U parameters and the T parameter varies in the range 0\sim 1/(25\alpha), the upper bound of T parameter will decrease as long as Z' mass become large. The S parameter can be either positive or negative depending on whether the Z' mass is large or small. The Z' mass is also bounded above and the upper bound depend on value of T parameter. We obtain the values for all the coefficients of the electroweak chiral Lagrangian up to order of p^4.Comment: 52 pages, 15 figure

    LHC Search of New Higgs Boson via Resonant Di-Higgs Production with Decays into 4W

    Full text link
    Searching for new Higgs particle beyond the observed light Higgs boson h(125GeV) will unambiguously point to new physics beyond the standard model. We study the resonant production of a CP-even heavy Higgs state H0H^0 in the di-Higgs channel via, gg→H0→h0h0→WW∗WW∗gg\to H^0\to h^0h^0\to WW^*WW^*, at the LHC Run-2 and the high luminosity LHC (HL-LHC). We analyze two types of the 4W4W decay modes, one with the same-sign di-leptons (4W→ℓ±νℓ±ν4q4W\to\ell^\pm\nu\ell^\pm\nu 4q) and the other with tri-leptons (4W→ℓ±νℓ∓νℓ±ν2q4W\to\ell^\pm\nu\ell^\mp\nu\ell^\pm\nu 2q). We perform a full simulation for the signals and backgrounds, and estimate the discovery potential of the heavy Higgs state at the LHC Run-2 and the HL-LHC, in the context of generical two-Higgs-doublet models (2HDM). We determine the viable parameter space of the 2HDM as allowed by the theoretical constraints and the current experimental limits. We systematically analyze the allowed parameter space of the 2HDM which can be effectively probed by the heavy Higgs searches of the LHC, and further compare this with the viable parameter region under the current theoretical and experimental bounds.Comment: v3: JHEP published version, 34pp, 10 Figs(36 plots) and 9 Tables. Only minor typos fixed, references added. v2: JHEP version. All results and conclusions un-changed, discussions and references added. (This update is much delayed due to author's traveling and flu.

    Power-law Strength-Degree Correlation From a Resource-Allocation Dynamics on Weighted Networks

    Full text link
    Many weighted scale-free networks are known to have a power-law correlation between strength and degree of nodes, which, however, has not been well explicated. We investigate the dynamic behaviors of resource/traffic flow on scale-free networks. The dynamical system will evolve to a kinetic equilibrium state, where the strength, defined by the amount of resource or traffic load, is correlated with the degree in a power-law form with tunable exponent. The analytical results agree with simulations well.Comment: 6 pages, and 8 figure
    • …
    corecore