14,487 research outputs found

    Determining VtbV_{tb} at Electron-Positron Colliders

    Full text link
    Verifying Vtb≃1V_{tb} \simeq 1 is critical to test the three generation assumption of the Standard Model. So far our best knowledge of VtbV_{tb} is inferred either from the 3×33\times 3 unitarity of CKM matrix or from single top-quark productions upon the assumption of universal weak couplings. The unitarity could be relaxed in new physics models with extra heavy quarks and the universality of weak couplings could also be broken if the WtbWtb coupling is modified in new physics models. In this work we propose to measure VtbV_{tb} in the process of e+e−→ttˉe^+ e^- \to t\bar{t} without prior knowledge of the number of fermion generations or the strength of the WtbWtb coupling. Using an effective Lagrangian approach, we perform a model-independent analysis of the interactions among electroweak gauge bosons and the third generation quarks, i.e. the WtbWtb, ZttˉZt\bar{t} and ZbbˉZb\bar{b} couplings. The electroweak symmetry of the Standard Model specifies a pattern of deviations of the ZZ-tLt_L-tLt_L and WW-tLt_L-bLb_L couplings after one imposes the known experimental constraint on the ZZ-bLb_L-bLb_L coupling. We demonstrate that, making use of the predicted pattern and the accurate measurements of top-quark mass and width from the energy threshold scan experiments, one can determine VtbV_{tb} from the cross section and the forward-backward asymmetry of top-quark pair production at an {\it unpolarized} electron-positron collider.Comment: publish versio

    On black hole spectroscopy via adiabatic invariance

    Get PDF
    In this paper, we obtain the black hole spectroscopy by combining the black hole property of adiabaticity and the oscillating velocity of the black hole horizon. This velocity is obtained in the tunneling framework. In particular, we declare, if requiring canonical invariance, the adiabatic invariant quantity should be of the covariant form Iadia=∮pidqiI_{\textrm{adia}}=\oint p_idq_i. Using it, the horizon area of a Schwarzschild black hole is quantized independent of the choice of coordinates, with an equally spaced spectroscopy always given by ΔA=8πlp2\Delta \mathcal{A}=8\pi l_p^2 in the Schwarzschild and Painlev\'{e} coordinates.Comment: 13 pages, some references added, to be published in Phys. Lett.

    Quarkonium Production in an Improved Color Evaporation Model

    Full text link
    We propose an improved version of the color evaporation model to describe heavy quarkonium production. In contrast to the traditional color evaporation model, we impose the constraint that the invariant mass of the intermediate heavy quark-antiquark pair to be larger than the mass of produced quarkonium. We also introduce a momentum shift between heavy quark-antiquark pair and the quarkonium. Numerical calculations show that our model can describe the charmonium yields as well as ratio of ψ′\psi^\prime over J/ψJ/\psi better than the traditional color evaporation model.Comment: 6 pages, 4 figure

    Three-dimensional structures of the spatiotemporal nonlinear Schrödinger equation with power-law nonlinearity in PT-symmetric potentials

    Get PDF
    The spatiotemporal nonlinear Schrödinger equation with power-law nonlinearity in PT-symmetric potentials is investigated, and two families of analytical three-dimensional spatiotemporal structure solutions are obtained. The stability of these solutions is tested by the linear stability analysis and the direct numerical simulation. Results indicate that solutions are stable below some thresholds for the imaginary part of PT-symmetric potentials in the self-focusing medium, while they are always unstable for all parameters in the self-defocusing medium. Moreover, some dynamical properties of these solutions are discussed, such as the phase switch, power and transverse power-flow density. The span of phase switch gradually enlarges with the decrease of the competing parameter k in PT-symmetric potentials. The power and power-flow density are all positive, which implies that the power flow and exchange from the gain toward the loss domains in the PT cell.Funded by the National Natural Science Foundation of China (Grant No. 11375007), the Zhejiang Provincial Natural Science Foundation of China (Grant No. LY13F050006)

    Crystalline and Electronic Structures of Molecular Solid C50_{50}Cl10% _{10}: First-Principles Calculation

    Full text link
    A molecular solid C50_{50}Cl10_{10} with possible crystalline structures, including the hexagonal-close-packed (hcp) phase, the face-centered cubic (fcc) phase, and a hexagonal monolayer, is predicted in terms of first-principles calculation within the density functional theory. The stable structures are determined from the total-energy calculations, where the hcp phase is uncovered more stable than the fcc phase and the hexagonal monolayer in energy per molecule. The energy bands and density of states for hcp and fcc C50_{50}Cl10_{10} are presented. The results show that C50_{50}Cl% 10_{10} molecules can form either a hcp or fcc indirect-gap band insulator or an insulating hexagonal monolayer.Comment: 5 pages, 6 figure

    Half-Metallic Silicon Nanowires: Multiple Surface Dangling Bonds and Nonmagnetic Doping

    Full text link
    By means of first-principles density functional theory calculations, we find that hydrogen-passivated ultrathin silicon nanowires (SiNWs) along [100] direction with symmetrical multiple surface dangling bonds (SDBs) and boron doping can have a half-metallic ground state with 100% spin polarization, where the half-metallicity is shown quite robust against external electric fields. Under the circumstances with various SDBs, the H-passivated SiNWs can also be ferromagnetic or antiferromagnetic semiconductors. The present study not only offers a possible route to engineer half-metallic SiNWs without containing magnetic atoms but also sheds light on manipulating spin-dependent properties of nanowires through surface passivation.Comment: 4 pages, 5 figure
    • …
    corecore