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Abstract

The spatiotemporal nonlinear Schrödinger equation with power-law nonlinearity in PT -symmetric potentials is
investigated, and two families of analytical three-dimensional spatiotemporal structure solutions are obtained. The stability
of these solutions is tested by the linear stability analysis and the direct numerical simulation. Results indicate that solutions
are stable below some thresholds for the imaginary part of PT -symmetric potentials in the self-focusing medium, while
they are always unstable for all parameters in the self-defocusing medium. Moreover, some dynamical properties of these
solutions are discussed, such as the phase switch, power and transverse power-flow density. The span of phase switch
gradually enlarges with the decrease of the competing parameter k in PT -symmetric potentials. The power and power-flow
density are all positive, which implies that the power flow and exchange from the gain toward the loss domains in the PT
cell.
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Introduction

In the last few decades, there has been a surge of interest in

obtaining exact analytical solutions of nonlinear partial differential

equations (NPDEs) to describe the natural physical phenomena in

numerous branches from mathematical physics, engineering scienc-

es, chemistry to biology [1–3]. Exact solutions often facilitate the

testing of numerical solvers as well as aiding in the stability analysis.

The nonlinear Schrödinger equation (NLSE), as one of important

nonlinear models, has now become an intensely studied subjects due

to its potential applications in physics, biology and other fields.

Abundant mathematical solutions and physical localized structures

for various NLSEs have been reported. For example, bright and

dark solitons and similaritons [4–6], rogue waves [7], nonautono-

mous solitons [8] and light bullets [9] etc. have been predicted

theoretically and observed experimentally in different domains.

Recently, two-dimensional accessible solitons [10] and nonau-

tonomous solitons [11] for NLSE in parity-time (PT )-symmetric

potentials have been reported. The PT -symmetry originates from

quantum mechanics [12], and was introduced into optical field

since the important development on the application of

PT symmetry in optics was initiated by the key contributions of

Christodoulides and co-workers [13]. Quite recently, various

nonlinear localized structures in PT -symmetric potentials have

been extensively studied. Nonlinear localized modes in PT -

symmetric optical media with competing gain and loss were

studied [14]. The dynamical behaviors of (1+1)-dimensional

solitons in PT -symmetric potential with competing nonlinearity

were investigated [15]. Bright spatial solitons in Kerr media with

PT -symmetric potentials have also been reported [16]. Dark

solitons and vortices in PT -symmetric nonlinear media were

discussed, too [17]. Moreover, Ruter et al. [18] and Guo et al. [19]

studied the experimental realizations of such PT systems.

However, three-dimensional (3D) spatiotemporal structures in

PT -symmetric potentials are less studied. Especially, 3D spatio-

temporal structures in PT -symmetric potentials with power-law

nonlinearities are hardly reported.

The aim of this paper is to present 3D spatiotemporal structures

of 3DNLSE with power-law nonlinearity in PT -symmetric

potentials. Two issues are firstly investigated in this present paper:

i) analytical spatiotemporal structure solutions are firstly reported

in PT -symmetric power-law nonlinear media, and ii) linear

stability analysis for exact solutions and direct simulation are firstly

carried out in PT -symmetric power-law nonlinear media. Our

results will rich the localized structures of NLSE in the field of

mathematical physics, and might also provide useful information

for potential applications of synthetic PT -symmetric systems in

nonlinear optics and condensed matter physics.

Results

Analytical spatiotemporal structure solutions
The propagation of spatiotemporal structures in a PT -

symmetric nonlinear medium of non-Kerr index is governed by
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the following 3DNLSE

iuzzb1D\uzb2uttzcmDuD2muz½V (r)ziW (r)�u~0, ð1Þ

where D\~(L2
x,L2

y),r:(r1,r2,r3):(x,y,t), the complex envelope

of the electrical field u(z,r) is normalized as (k0w0){1(n2=n0){1=2

with linear index n0 and Kerr index n2, longitudinal z, transverse

x,y coordinates and comoving time t are respectively scaled to the

diffraction length LD:k0w2
0, the input width unit w0 with the

wavenumber k0:2pn0=l at the input wavelength l and
ffiffiffiffiffiffiffi
LD

p
.

Parameters b1 and b2 are respectively the coefficients of the

diffraction and dispersion, and cm for m~1,:::,n stand for the

nonlinearities of orders up to 2n+1. For m = 1 one has the

simple Kerr nonlinearity, for m = 2 the quintic, for m = 3 the septic,

and so on. Functions V (r):k2
0w2

0dnR(r) and W (r):k2
0w2

0dnI (r),

with the perturbation of index by a complex profile

n~n0½1znR(r)zinI (r)�, are the real and imaginary components

of the complex PT -symmetric potential, and correspond to the

index guiding and the gain or loss distribution of the optical

potential respectively. V and W satisfy V (r)~V ({r) and

W (r)~{W ({r).

We consider that solutions of 3DNLSE (1) is of the form:

u(r)~W(r)exp imzziH(r) ,½ � ð2Þ

where two real valued functions W and h satisfy the following

differential equations:

X3

j~1

Bj(DjW{D+jHD2W)z½V (r){m�WzcmW
2mz1~0 ð3Þ

X3

j~1

Bj(WDjHz2+jH:+jW)zW (r)W~0: ð4Þ

where j~1,2,3,B1~B2~b1,B3~b2,D1~L2
x,D2~L2

y,D3~L2
t ,+1

~Lx,+2~Ly,+3~Lt.

In the following, we obtain analytical spatiotemporal structure

solutions of Eqs. (3) and (4) in two different PT -symmetric

potentials.

Case 1 First type of extended PT -symmetric
potential. Considering the PT -symmetric potential

V (r)~
X3

j~1

½V1jsech2(rj)zV2jsech2k(rj)�zV3 P
3

J~1
sech2m(rj),

W (r)~
X3

j~1

Wjsechk(rj)tanh(rj),

ð5Þ

with real parameters V1j ,V2j ,V3 and Wj , and the competing

parameter k, the localization condition WR0 as rR6‘ yields

solution of Eqs. (3) and (4)

W(r)~ {
V3

cm

� � 1
2m

sech(x)sech(y)sech(t),

H(r)~
X3

j~1

Wj

(kz2)Bj
2F1

1

2
,
kz1

2
,
3

2
,{j2

j

� �
jj ,

ð6Þ

where jj~sinh(rj) and 2F1(a,b,c,o) is the Hypergeometric

function [20]. The parameters in the potential (4) and (5) satisfy

that V11~V12~2b1,V13~2b2,V21~V22~W 2
1 =½(kz2)2b1�,V23

~W 2
3 =½(kz2)2b2�,W1~W2,m~2b1zb2, with three arbitrary

constants V3, W1 and W3. Parameter m has a serious impact on

the nature of the gain and loss profile W(r). The value of k as zero

or nonzero leads to W(r) as asymptotically non-vanishing or

localized (asymptotically vanishing), respectively. For instance, if

k = 0, it is the first type of extended Rosen-Morse potential, and if

k = 1, it is the first type of extended hyperbolic Scarf potential.

From (6), V3cmv0, thus solution (6) exists in self-focusing (SF)

media with positive nonlinearity (cmw0) if V3v0, as well as in self-

defocusing (SD) media with negative nonlinearity (cmv0) if

V3w0.

Specially, if the value of k is chosen as 0–3, h(r) has the different

forms shown in Table 1.

Case 2 Second type of extended PT -symmetric
potential. In the following PT -symmetric potential

V(r)~
X3

j~1

½V1jsech2(rj)zV2jsech2k(rj)�zV3 P
3

J~1
sech2(rj),

W (r)~
X3

j~1

Wjsechk(rj)tanh(rj),

ð7Þ

with real parameters V1j , V2j , V3 and Wj, and the competing

parameter k, the localization condition WR0 as rR6‘ leads to

solution of Eqs. (3) and (4) in the form

W(r)~

ffiffiffiffiffiffiffiffiffiffiffi
{

V3

cm

s
sech(x)sech(y)sech(t)

" #1
m

,

H(r)~
X3

j~1

mWj

(kmz2)Bj
2F1

1

2
,
kz1

2
,
3

2
,{j2

j

� �
jj ,

ð8Þ

with constant V11~V12~(mz1)b1 = m2, V13~ (mz1)b2 = m2,

V21~V22~m2W 2
1 ½= ½(kmz2)2b1�, V23~m2W 2

3 = ½(kmz2)2b2�,
W2~W1,m~(2b1zb2)=m2and three arbitrary constants V3,W1,

and W3. Moreover, jj~sinh(rj) and 2F1(a,b,c,o) is the Hyper-

geometric function.

Specially, when the value of k is chosen as 0–3, the expressions

of h(r) are shown in Table 2.

Note that for the Kerr nonlinearity (i.e. m = 1), solutions (6) and

(8) are same.

Properties of spatiotemporal structure solutions
The even and odd functions for the real part V and imaginary

part W of the PT -symmetric potential (7) are shown in Fig. 1 in

regard to x,y and t for different k. Figs. 1(c) and (d) show V for

different k at z~30, y~0, t~10 when m = 2 and 1, respectively.

Fig. 1(e) shows W for different k at z~30, y~0, t~10 when m = 2.

From the yellow dash lines in Figs. 1(c)–(e), V is localized when

m = 1 or 2, while W is asymptotically non-vanishing in the 2D

extended Rosen-Morse potential. It possesses unbroken PT -

symmetry [18]. From red crosses, blue lines and black circles in

Figs. 1(c)–(e), the peaks and widths of V and W gradually decrease

when k increases. Compared red crosses, blue lines and black

circles in Fig. 1(c) with those in Fig. 1(d), the amplitudes of V

attenuate when m adds.

3D Structures of Power-Law Nonlinear NLSE inPT -Symmetric Potentials
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In the PT -symmetric potentials above, we can find the

phenomena of phase switch of solutions (6) and (8). Fig. 2(a)

exhibits switches of phase in (8) for different PT -symmetric

potentials (7) with m = 2. When k decreases, phases switch from

smaller to bigger values along x, and the spans of switch gradually

enlarge. However, in the Rosen-Morse potential with k = 0, no

phase switch appears. In the PT -symmetric potential (5) with

m = 1,2, the phase switch also exists. We omit the related plots.

The power P can be expressed as P~
Ðz?
{? Du(z,r)D2

dr~8({V3=cm)1=m for solution (6). For solution (8), when m = 1,

P~{8V3=c1, and when m = 2, P~{p3({V3=c2)1=2. These

powers are all positive for any values of the parameter V3 due to

V3cmv0, and independent of the parameter of the imaginary part

in the PT -symmetric potential. Moreover, the power-flow

densities (Poynting vectors) ~SS~(i=2)½W+W�{W�+W� across spa-

tiotemporal structure solutions (6) and (8) have the form ~SS~
1

kz2
({ V3

cm
)

1
m½W1

b1
sechkz2(x), W1

b1
sechkz2(y), W3

b2
sechkz2(t)� and

~SS~ m
kmz2

({ V3

cm
)

1
m½W1

b1
sechkz2

m(x), W1

b1
sechkz2

m(y), W3

b2
sechkz2

m(t)�,
which are related to the competing parameter k and parameter

m. Obviously, due to V3cmv0, S is everywhere positive, which

indicates that the power flow and exchange for solutions (6) and (8)

in the PT cells are always from the gain toward the loss domains

(one direction). An example to this case is shown in Fig. 2(b) for

k = 3. The similar results also exist when other k and m are chosen.

Discussion and Analysis

Linear stability analysis of analytical solutions
We study the linear stability of solutions (2) with (6) and (8)

via the method developed in [21] when m = 1,2. A perturbation

of an exact solution can be expressed as

u(z,r)~fun(r)z"½R(r)zI(r)�exp(isz)gexp(imz), where e is an

infinitesimal amplitude, un(r) is a solution of Eq.(1), R(r) and I(r)

are the real and imaginary parts of perturbation solution, and s
represents the perturbation growth rate. Inserting this expression

into Eq. (1) and linearizing it around the unperturbed one (the

first-order term of e), we have the eigenvalue problem

LzR~sI ,

L{I~sR,
ð9Þ

where s is an eigenvalue, R and I are eigenfunctions with

Hermitian operators L+~{b1(L2
xzL2

y){b2L
2
t {g+c1un(r)2

{(VziW )zm with g+ = 3 and g2 = 1 for m = 1 and

L+~{b1(L2
xzL2

y){b2L
2
t {n+c2un(r)2{(VziW )zm with nz

~5 and n{~1 for m = 2. If all imaginary parts of s are equal to

zero, solution can be completely stable. Otherwise, if any

eigenvalue s possesses an imaginary part, the perturbed solution

would add exponentially with z and thus corresponding solution

becomes linearly unstable.

The eigenvalues s of solutions (6) and (8) in the SF and DF

media under the 2D extended Rosen-Morse potential have many

imaginary parts, and thus solutions (6) and (8) are always unstable

in these nonlinear media. Fig. 3 shows some examples of the

eigenvalue s in the SF and DF media. From Figs. 3(a) and 3(b), the

eigenvalues s for both SF and SD nonlinearities have many

imaginary parts, and thus solutions (6) and (8) with m = 1 are

unstable. Similar, solutions (6) and (8) with m = 2 are also unstable

because there exist many imaginary parts of the eigenvalue s in

Figs. 3(c) and 3(d), too. The asymptotically non-vanishing

characteristic of W in the 2D extended Rosen-Morse potential

Table 1. The expression of H(r) in first type of extended PT -symmetric potential.

k H(r)

0 W1

2b1

(xzy)z
W2

2b2

t

1 W1

3b1

farctan½sinh(x)�zarctan½sinh(y)�gz W2

3b2

arctan½sinh(t)�

2 W1

4b1

½tanh(x)ztanh(y)�z W2

4b2

tanh(t)

3 W1

10b1

farctan½sinh(x)�ztanh(x)sech(x)zarctan½sinh(y)�ztanh(y)sech(y)gz W2

10b2
farctan½sinh(t)�ztanh(t)sech(t)g

doi:10.1371/journal.pone.0100484.t001

Table 2. The expression of H(r) in second type of extended PT -symmetric potential.

m H(r)

0 mW1

2b1

(xzy)z
mW2

2b2

t

1 mW1

(mz2)b1

farctan½sinh(x)�zarctan½sinh(y)�gz mW2

(mz2)b2

arctan½sinh(t)�

2 mW1

(2mz2)b1

½tanh(x)ztanh(y)�z mW2

(2mz2)b2

tanh(t)

3 mW1

2(3mz2)b1

farctan½sinh(x)�ztanh(x)sech(x)zarctan½sinh(y)�ztanh(y)sech(y)gz mW2

2(3mz2)b2
farctan½sinh(t)�ztanh(t)sech(t)g

doi:10.1371/journal.pone.0100484.t002
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leads to the linear instability of solutions (6) and (8) with m = 1 and

m = 2.

Under the 2D extended hyperbolic Scarf potential, solutions (6)

and (8) with m = 1 and m = 2 are stable below some thresholds for

W1 and W3 in the SF medium, while they are always unstable for

all parameters in the SD medium. Fig. 4 exhibits some examples of

the eigenvalues s in the SF and DF media. From Figs. 4(a), (c) and

(e), the eigenvalues s of solutions (6) and (8) with m = 1 and m = 2

are all real, and thus solutions are linearly stable in the SF

medium. When b1~1:1, b2~1:2, V3~{13, k~1, c1~1:1 or

c2~1:1, the thresholds are W1v0:04,W3v0:043 for solutions (6)

and (8) with m = 1, W1v0:051, W3v0:056 for solution (6) with

m = 2, and W1v0:005, W3v0:006 for solution (8) with m = 2,

respectively. However, solutions (6) and (8) with m = 1,2 are always

unstable in the SD medium because there exist some imaginary

parts of the eigenvalues s for all parameters. Some cases are shown

Figure 1. The PT -symmetric potential (7): (a) and (b) Isosurface plots of V and W for k = 3 at z = 20; (c) and (d) V for different k at
z~30, y~0, t~10 when m = 2 and 1, respectively; (e) W for different k at z~30, y~0, t~10 when m = 2. Parameters are chosen as
b1~1:1, b2~1:2, W1~0:8, W3~0:9, V3~{13.
doi:10.1371/journal.pone.0100484.g001

Figure 2. Switches of phase (8) for different PT -symmetric potentials (7) in (a). Power-flow vector ~SS for solution (8) when k = 3 indicating
the power flow from gain towards loss domains in (b). Parameters are chosen as the same as those in Fig. 1.
doi:10.1371/journal.pone.0100484.g002
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in Figs. 4(b), (d), (f). From these results, the gain (loss) related to the

values of W1, W3 should be enough small compared with a fixed

value of V3, otherwise, solutions (6) and (8) with m = 1 and m = 2

eventually lead to instability.

Furthermore, when k = 2,3 in the 2D extended PT -symmetric

potentials (5) and (7), solutions (6) and (8) with m = 1 and m = 2 are

stable below some thresholds for W1 and W3 in the SF medium

because the eigenvalues s of solutions (6) and (8) with m = 1 and

m = 2 are all real from Fig. 3. When b1~1:1, b2~1:2,
V3~{13, k~2, c1~1:1 or c2~1:1, the thresholds are

W1v0:043,W3v0:051 for solutions (6) and (8) with m = 1,

W1v0:06, W3v0:066 for solution (6) with m = 2, and

W1v0:0072, W3v0:058 for solution (8) with m = 2 from

Figs. 5(a), (c), (e), respectively. For b1~1:1, b2~1:2, V3~{13,
k~3, c1~1:1 or c2~1:1, the thresholds are W1v0:047,
W3v0:057 for solutions (6) and (8) with m = 1, W1v

0:074, W3v0:082 for solution (6) with m = 2, and W1~
W3v0:0061 for solution (8) with m = 2 from Figs. 5(b), (d), (f),

respectively. However, in the SD medium, solutions (6) and (8)

with m = 1,2 are always unstable because there also exist some

imaginary parts of the eigenvalues s for all parameters.

When k is bigger, we have the similar results. Solutions (6) and

(8) with m = 1 and m = 2 are stable below some thresholds for W1

and W3 in the SF medium, while they are always unstable for all

parameters in the SD medium. Here we omit these discussions.

Numerical rerun of analytical solutions
Based on the linear stability analysis, we know the stable

domains of analytical solutions under different 2D extended PT -

symmetric potentials. In the following, we further test the stability

of these solutions by the direct numerical simulation. Here we use

a split-step Fourier pulse technique. In real application, the

analytical cases are not exactly satisfied, thus we consider the

stability of solutions with respect to finite perturbations. The

perturbations of 5% white noise are added to initial fields coming

from solutions (6) and (8) of Eq. (1).

Figure 6 exhibits the numerical reruns corresponding to

Figs. 4(a)–(f) in the 2D extended hyperbolic Scarf potential. In

the SF medium, the single PT complex potential is strong enough

to suppress the collapse of localized solutions caused by diffraction,

dispersion and different nonlinearities. The numerical solutions in

Figs. 6(b), (d) and (f) do not yield any visible instability, and good

Figure 3. Eigenvalues for solution (6) and (8) in (a),(c),(d) SF medium and (b) SD medium under the 2D extended Rosen-Morse
potential. Parameters are chosen as W1~0:04, W3~0:043, b1~1:1, b2~1:2 with (a),(c),(d) V3 = 213 and (b) V3 = 13. Other parameters are shown in
the plots.
doi:10.1371/journal.pone.0100484.g003

Figure 4. Eigenvalues for solution (6) and (8) in (a),(c),(e) SF
medium and (b), (d), (f) SD medium under the 2D extended
hyperbolic Scarf potential. Parameters are chosen as b1~1:1,
b2~1:2 and (a),(b) Parameters are chosen as b1~1:1, b2~1:2 and

(a),(b) W1~0:04, W3~0:043, (c),(d) W1~0:051, W3~0:056, (e),(f)
W1~0:005,W3~0:006 with (a),(c),(e) V3 = 213 and (b), (d), (f) V3 = 13.
Other parameters are shown in the plots.
doi:10.1371/journal.pone.0100484.g004
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agreement with results from the linear stability analysis for

analytical solutions is observed. Numerical calculations indicate

no collapse, and stable propagations over tens of diffraction/

dispersion lengths are observed except for some small oscillations.

Compared Fig. 6(b) with Fig. 6 (d) or Fig. 6 (f) respectively, we see

that for the same solution (6) or (8), solution with m = 1 is more

stable than solution with m = 2 because there are smaller

oscillations in Fig. 6(b) than those in Fig. 6 (d) or Fig. 6 (f). In

the DF medium, solutions (6) and (8) are both unstable in the 2D

extended hyperbolic Scarf potential, which is shown in Figs. 6(c),

(e) and (g). They can not maintain their original shapes, change

from distortion to collapse, and ultimately decay into noise.

Figure 7 displays other examples of stable analytical solutions,

and it is the numerical reruns corresponding to Figs. 5(a),(b),(d),(f)

in the 2D extended PT -symmetric potential. In the SF medium,

we can obtain stable spatiotemporal structures. From

Figs. 5(a),(b),(c),(e), the influence of initial 5% white noise is

suppressed, and these spatiotemporal structures (6) and (8) stably

propagate over tens of diffraction/dispersion lengths and only

some small oscillations appear when k is chosen 2 or 3 in the 2D

extended PT -symmetric potential. However, in the DF medium,

spatiotemporal structures are unstable and broken down propa-

gating after tens of diffraction/dispersion lengths, and at last turn

into noise. Compared Fig. 6(d) with Fig. 7 (c) or Fig. 6 (f) with Fig. 7

(e) respectively, spatiotemporal structures are more stable in the

2D extended PT -symmetric potential with k = 3 than those with

k = 1.

Conclusions

We conclude the main points offered in this paper:

N Analytical spatiotemporal structure solutions are firstly report-

ed in PT -symmetric power-law nonlinear media.

N We obtain two families of analytical three-dimensional

spatiotemporal structure solutions of a spatiotemporal NLSE

with power-law nonlinearity in PT -symmetric potentials.

Some dynamical characteristics of these solutions are dis-

cussed, such as the phase switch, power and power-flow

density. The spans of phase switch gradually enlarge with the

decrease of the competing parameter k in PT -symmetric

potentials. The power and power-flow density are all positive,

which implies that the power flow and exchange from the gain

toward the loss domain in the PT cell.

N Linear stability analysis for exact solutions and direct

simulation are firstly carried out in PT -symmetric power-law

nonlinear media.

Figure 5. Eigenvalues for solution (6) and (8) in the SF medium
under the 2D extended PT -symmetric potential. Parameters are
chosen as b1~1:1, b2~1:2, V3~{13 with (a) W1~0:043, W3~0:051,
(b) W1~0:054, W3~0:057, (c) W1~0:06, W3~0:066, (d) W1~0:074,
W3~0:082, (e) W1~0:0072, W3~0:058 and (f) W1~W3~0:0061.
Other parameters are shown in the plots.
doi:10.1371/journal.pone.0100484.g005

Figure 6. Initial value of solution (6) at z = 0 in (a); (b)–(g) the numerical reruns corresponding to Figs. 4(a)–(f) in the 2D extended
hyperbolic Scarf potential at z = 80. An added 5% white noise are added to the initial values. All parameters are chosen as the same as those in
Fig. 4.
doi:10.1371/journal.pone.0100484.g006
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N The stability of exact solutions is tested by the linear stability

analysis and the direct numerical simulation. Results indicate

that solutions are stable below some thresholds for the

imaginary part W of PT -symmetric potentials in the SF

medium, while they are always unstable for all parameters in

the SD medium.

N Our results will rich the localized structures of NLSE in the

field of mathematical physics, and might also provide useful

information for potential applications of synthetic PT -

symmetric systems in nonlinear optics and condensed matter

physics.
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10. Zhong WP, Belić MR, Huang TW (2012) Two-dimensional accessible solitons in

PT-symmetric potentials, Nonlinear Dyn. 70: 2027–2034.

11. Xu XJ, Dai CQ (2014) Nonlinear tunnelling of spatial solitons in PT-symmetric

potential, Opt Commun. 318: 112–119.

12. Bender CM, Boettcher S (1998) Real spectra in non-Hermitian Hamiltonians

having PT-symmetry, Phys Rev Lett. 80: 5243–5246.

13. Musslimani ZH, Makris KG, El-Ganainy R, Christodoulides DN (2008) Optical

Solitons in PT Periodic Potentials, Phys Rev Lett. 100: 030402.

14. Midya B, Roychoudhury R (2013) Nonlinear localized modes in PT-symmetric

Rosen-Morse potential wells, Phys Rev A 87: 045803.

15. Khare A, Al-Marzoug SM, Bahlouli H (2012) Solitons in PT-symmetric

potential with competing nonlinearity. Phys Lett A 376: 2880–2886.

16. Dai CQ, Wang YY (2014) A bright 2D spatial soliton in inhomogeneous Kerr

media with PT-symmetric potentials, Laser Phys. 24: 035401.

17. Achilleos V, Kevrekidis PG, Frantzeskakis DJ, Carretero-Gonzales R (2012)

Dark solitons and vortices in PT-symmetric nonlinear media from spontaneous

symmetry breaking to nonlinear PT phase transitions, Phys Rev A 86: 013808.

18. Ruter CE, Makris KG, El-Ganainy R, Christodoulides DN, Segev M, et al.

(2010) Observation of parity-time symmetry in optics, Nature Phys. 6: 192–195

19. Guo A, Salamo GJ, Duchesne D, Morandotti R, Volatier-Ravat M, et al. (2009)

Observation of PT -Symmetry Breaking in Complex Optical Potentials, Phys

Rev Lett. 103: 093902

20. Abramowitz M, Stegun IA (1965) ‘‘Chapter 15’’, Handbook of Mathematical

Functions with Formulas, Graphs, and Mathematical Tables, New York: Dover,

p555.

Figure 7. The numerical reruns corresponding to Figs. 5(a),(b),(d),(f) in the 2D extended PT -symmetric potential at z = 80 in
(a),(b),(c),(e). (d) and (f) are corresponding to (c) and (e) in the SD medium with V3~13,c2~{1:1. An added 5% white noise are added to the initial
values. All other parameters are chosen as the same as those in Fig. 5.
doi:10.1371/journal.pone.0100484.g007

PLOS ONE | www.plosone.org 7 July 2014 | Volume 9 | Issue 7 | e100484

3D Structures of Power-Law Nonlinear NLSE in PT - Symmetric Potentials



21. Bronski JC, Carr LD, Deconinck B, Kutz JN (2001) Bose-Einstein Condensates

in Standing Waves: The Cubic Nonlinear Schrodinger Equation with a Periodic
Potential, Phys Rev Lett. 86: 1402–1405.

PLOS ONE | www.plosone.org 8 July 2014 | Volume 9 | Issue 7 | e100484

3D Structures of Power-Law Nonlinear NLSE in PT - Symmetric Potentials


