584 research outputs found

    The production of the new gauge boson BHB_{H} via e−γe^{-}\gamma collision in the littlest Higgs model

    Full text link
    The new lightest gauge boson BHB_H with mass of a few hundred GeV is predicted in the littlest Higgs model. BHB_H should be accessible in the planed ILC and the observation of such particle can strongly support the littlest Higgs model. The realization of γγ\gamma\gamma and eγe\gamma collision will open a wider window to probe BHB_H. In this paper, we study the new gauge boson BHB_{H} production processes e−γ→e−γBHe^{-}\gamma\to e^{-}\gamma B_{H} and e−γ→e−ZBHe^{-}\gamma\to e^{-}Z B_{H} at the ILC. Our results show that the production cross section of the process e−γ→e−ZBHe^{-}\gamma\to e^{-}Z B_{H} is less than one fb in the most parameter spaces while the production cross section of the process e−γ→e−γBHe^{-}\gamma\to e^{-}\gamma B_{H} can reach the level of tens fb and even hundreds of fb in the sizable parameter spaces allowed by the electroweak precision data. With the high luminosity, the sufficient typical signals could be produced, specially via e−γ→e−γBHe^{-}\gamma\to e^{-}\gamma B_{H}. Because the final electron and photon beams can be easily identified and the signal can be easily distinguished from the background produced by ZZ and HH decaying, BHB_H should be detectable via eγe\gamma collision at the ILC. Therefore, the processes e−γ→e−γBHe^{-}\gamma\to e^{-}\gamma B_{H} and e−γ→e−ZBHe^{-}\gamma\to e^{-}Z B_{H} provide a useful way to detect BHB_{H} and test the littlest Higgs model.Comment: 15 pages, 3 figures. Some typos have been corrected, we have added some new references, and there are also some changes in equation 1

    Sexual and Gender Minority Status and Suicide Mortality: An Explainable Artificial Intelligence Analysis

    Get PDF
    Objectives: Suicide risk is elevated in lesbian, gay, bisexual, and transgender (LGBT) individuals. Limited data on LGBT status in healthcare systems hinder our understanding of this risk. This study used natural language processing to extract LGBT status and a deep neural network (DNN) to examine suicidal death risk factors among US Veterans.Methods: Data on 8.8 million veterans with visits between 2010 and 2017 was used. A case-control study was performed, and suicide death risk was analyzed by a DNN. Feature impacts and interactions on the outcome were evaluated.Results: The crude suicide mortality rate was higher in LGBT patients. However, after adjusting for over 200 risk and protective factors, known LGBT status was associated with reduced risk compared to LGBT-Unknown status. Among LGBT patients, black, female, married, and older Veterans have a higher risk, while Veterans of various religions have a lower risk.Conclusion: Our results suggest that disclosed LGBT status is not directly associated with an increase suicide death risk, however, other factors (e.g., depression and anxiety caused by stigma) are associated with suicide death risks

    Single molecule quantitation and sequencing of rare translocations using microfluidic nested digital PCR

    Get PDF
    Cancers are heterogeneous and genetically unstable. New methods are needed that provide the sensitivity and specificity to query single cells at the genetic loci that drive cancer progression, thereby enabling researchers to study the progression of individual tumors. Here, we report the development and application of a bead-based hemi-nested microfluidic droplet digital PCR (dPCR) technology to achieve ‘quantitative’ measurement and single-molecule sequencing of somatically acquired carcinogenic translocations at extremely low levels (<10−6) in healthy subjects. We use this technique in our healthy study population to determine the overall concentration of the t(14;18) translocation, which is strongly associated with follicular lymphoma. The nested dPCR approach improves the detection limit to 1 × 10−7 or lower while maintaining the analysis efficiency and specificity. Further, the bead-based dPCR enabled us to isolate and quantify the relative amounts of the various clonal forms of t(14;18) translocation in these subjects, and the single-molecule sensitivity and resolution of dPCR led to the discovery of new clonal forms of t(14;18) that were otherwise masked by the conventional quantitative PCR measurements. In this manner, we created a quantitative map for this carcinogenic mutation in this healthy population and identified the positions on chromosomes 14 and 18 where the vast majority of these t(14;18) events occur.Trans-National Institutes of Health Genes, Environment and Health Initiative, Biological Response Indicators of Environmental Systems Center Grant [U54 ES016115-01 to M.T.S. and R.A.M.] and National Institute of Environmental Health Sciences Superfund Basic Research Program Grant [P42 ES004705 to M.T.S.]; Canary Foundation and ACS Postdoctoral Fellowship Award in Early Detection [116373-PFTED-08-251-01-SIED to J.S.] from the American Cancer Society; New faculty start-up funds from the University of Kansas (in part to Y.Z.). National Science Foundation Graduate Research Fellowship (to R.N.). Funding for open access charge: National Institutes of Health [U54 ES016115-01]

    Characterizing nutrient patterns of food items in adolescent diet using data from a novel citizen science project and the US National Health and Nutrition Examination Survey (NHANES)

    Get PDF
    IntroductionA healthy diet is essential for promoting good health during adolescence and mitigating disease risks in adulthood. This underscores the need for improved nutrition education and increased access to healthier food choices. However, the accuracy of dietary data poses a significant challenge in nutritional research.MethodsWe utilized and analyzed a novel dietary record dataset collected through a high school citizen science project to address this issue. We focused on nutrients rather than food groups to characterize adolescent dietary patterns. The same analyses were performed on the 2019–2021 National Health and Nutrition Examination Survey data for comparison.ResultsBased on the U.S. Food and Drug Administration’s recommended daily value (DV) for nutrients, the majority of food items in our citizen science dataset are low (i.e., &lt;5% DV) in lipids, fiber, potassium, calcium, iron, sugar, and cholesterol. Only a minority of items are high (i.e., &gt;20% DV) in macro and micronutrients. The clustering analysis identified nine food clusters with distinct nutrient profiles that vary significantly in size. The analyses on the NHANES data yielded similar findings, but with higher proportions of foods high in energy, lipids, carbohydrates, sugar, iron, and sodium compared with those of the citizen science dataset.DiscussionThis study demonstrates the potential of citizen science projects in gathering valuable dietary data and understanding adolescent nutrient intake. Identifying critical nutrient gaps can guide targeted nutrition education and the provision of accessible healthier food options, leading to positive health outcomes during adolescence and beyond

    Probing the lightest new gauge boson BHB_H in the littlest Higgs model via the processes γγ→ffˉBH\gamma\gamma \to f\bar{f}B_H at the ILC

    Full text link
    The neutral gauge boson BHB_H with the mass of hundreds GeV, is the lightest particle predicted by the littlest Higgs(LH) model, and such particle should be the first signal of the LH model at the planed ILC if it exists indeed. In this paper, we study some processes of the BHB_H production associated with the fermion pair at the ILC, i.e., γγ→ffˉBH\gamma\gamma\to f\bar{f}B_{H}. The studies show that the most promising processes to detect BHB_H among γγ→ffˉBH\gamma\gamma\to f\bar{f}B_{H} are γγ→lâ€Č+lâ€Č−BH(lâ€Č=e,ÎŒ)\gamma\gamma\to l'^+l'^-B_{H}(l'=e,\mu), and they can produce the sufficient signals in most parameter space preferred by the electroweak precision data at the ILC. On the other hand, the signal produced via the certain BHB_H decay modes is typical and such signal can be easily identified from the SM background. Therefore, BHB_H, the lightest gauge boson in the LH model would be detectable at the photon collider realized at the ILC.Comment: 12 pages, 4 figure

    Non-Equilibrium Field Dynamics of an Honest Holographic Superconductor

    Full text link
    Most holographic models of superconducting systems neglect the effects of dynamical boundary gauge fields during the process of spontaneous symmetry-breaking. Usually a global symmetry gets broken. This yields a superfluid, which then is gauged "weakly" afterwards. In this work we build (and probe the dynamics of) a holographic model in which a local boundary symmetry is spontaneously broken instead. We compute two-point functions of dynamical non-Abelian gauge fields in the normal and in the broken phase, and find non-trivial gapless modes. Our AdS3 gravity dual realizes a p-wave superconductor in (1+1) dimensions. The ground state of this model also breaks (1+1)-dimensional parity spontaneously, while the Hamiltonian is parity-invariant. We discuss possible implications of our results for a wider class of holographic liquids.Comment: 32 pages, 12 figures; v3: string theory derivation of setup added (section 3.1), improved presentation, version accepted by JHEP; v2: paragraph added to discussion, figure added, references added, typos correcte

    Age-Associated Metabolic and Morphologic Changes in Mitochondria of Individual Mouse and Hamster Oocytes

    Get PDF
    Background: In human oocytes, as in other mammalian ova, there is a significant variation in the pregnancy potential, with approximately 20% of oocyte-sperm meetings resulting in pregnancies. This frequency of successful fertilization decreases as the oocytes age. This low proportion of fruitful couplings appears to be influenced by changes in mitochondrial structure and function. In this study, we have examined mitochondrial biogenesis in both hamster (Mesocricetus auratus) and mouse (Mus musculus) ova as models for understanding the effects of aging on mitochondrial structure and energy production within the mammalian oocyte. Methodology/Principal Findings: Individual metaphase II oocytes from a total of 25 young and old mice and hamsters were collected from ovarian follicles after hormone stimulation and prepared for biochemical or structural analysis. Adenosine triphosphate levels and mitochondrial DNA number were determined within individual oocytes from young and old animals. In aged hamsters, oocyte adenosine triphosphate levels and mitochondrial DNA molecules were reduced 35.4% and 51.8%, respectively. Reductions of 38.4% and 44% in adenosine triphosphate and mitochondrial genomes, respectively, were also seen in aged mouse oocytes. Transmission electron microscopic (TEM) analysis showed that aged rodent oocytes had significant alterations in mitochondrial and cytoplasmic lamellae structure. Conclusions/Significance: In both mice and hamsters, decreased adenosine triphosphate in aged oocytes is correlated with a similar decrease in mtDNA molecules and number of mitochondria. Mitochondria in mice and hamsters undergo significant morphological change with aging including mitochondrial vacuolization, cristae alterations, and changes in cytoplasmic lamellae
    • 

    corecore