8,761 research outputs found

    Contractor renormalization group theory of the SU(NN) chains and ladders

    Get PDF
    Contractor renormalization group (CORE) method is applied to the SU(NN) chain and ladders in this paper. In our designed schemes, we show that these two classes of systems can return to their original form of Hamiltonian after CORE transformation. Successive iteration of the transformation leads to a fixed point so that the ground state energy and the energy gap to the ground state can be deduced. The result of SU(NN) chain is compared with the one by Bethe ansatz method. The transformation on spin-1/2 ladders gives a finite gap in the excited energy spectra to the ground state in an intuitive way. The application to SU(3) ladders is also discussed.Comment: 4 pages, 4 figures, submitted to Phys. Rev.

    Persistent spin current in spin-orbit coupling systems in the absence of an external magnetic field

    Full text link
    The spin-orbit coupling systems with a zero magnetic field is studied under the equilibrium situation, {\it i.e.}, without a voltage bias. A persistent spin current is predicted to exist under most circumstances, although the persistent charge current and the spin accumulation are identically zero. In particular, a two-dimensional quantum wire is investigated in detail. Surprisingly, a persistent spin current is found to flow along the confined direction, due to the spin precession in accompany with the particle motion. This provides an interesting example of constant spin flowing without inducing a spin accumulation, contrary to common intuition.Comment: 4 pages, 5 figure

    Superconductivity of the Ternary Boride Li_2Pd_3B Probed by ^{11}B NMR

    Get PDF
    We report a ^{11}B NMR measurement on the recently discovered superconductor Li_2Pd_3B. The nuclear spin lattice relaxation rate 1/T_1 shows a well-defined coherence peak just below T_c (H=1.46 T)=5.7 K, and the spin susceptibility measured by the Knight shift also decreases below T_c. These results indicate that the superconductivity is of conventional nature, with an isotropic gap. Our results also suggest that the pp-electrons of boron and the d-electrons of palladium that hybridize with boron pp-electrons are primarily responsible for the superconductivity.Comment: 4 pages, 5 figure

    Bias-controllable intrinsic spin polarization in a quantum dot

    Full text link
    We propose a novel scheme to efficiently polarize and manipulate the electron spin in a quantum dot. This scheme is based on the spin-orbit interaction and it possesses following advantages: (1) The direction and the strength of the spin polarization is well controllable and manipulatable by simply varying the bias or the gate voltage. (2) The spin polarization is quite large even with a weak spin-orbit interaction. (3) Both electron-electron interaction and multi-energy levels do not weaken but strengthen the spin polarization. (4) It has the short spin flip time. (5) The device is free of a magnetic field or a ferromagnetic material. (6) It can be easily realized with present technology.Comment: 9 pages, 5 figure

    Photon-assisted electron transport through a three-terminal quantum dot system with nonresonant tunneling channels

    Full text link
    We have studied the electron transport through a quantum dot coupled to three leads in the presence of external microwave fields supplied to different parts of the considered mesoscopic system. Additionally, we introduced a possible nonresonant tunneling channels between leads. The quantum dot charge and currents were determined in terms of the appropriate evolution operator matrix elements and under the wide band limit the analytical formulas for time-averaged currents and differential conductance were obtained. We have also examined the response of the considered system on the rectangular-pulse modulation imposed on different quantum dot-leads barriers as well as the time-dependence of currents flowing in response to suddenly removed (or included) connection of a quantum dot with one of the leads.Comment: 34 pages, 12 figure

    The angular spin current and its physical consequences

    Full text link
    We find that in order to completely describe the spin transport, apart from spin current (or linear spin current), one has to introduce the angular spin current. The two spin currents respectively describe the translational and rotational motion of a spin. The definitions of these spin current densities are given and their physical properties are discussed. Both spin current densities appear naturally in the spin continuity equation. Moreover we predict that the angular spin current can also induce an electric field E⃗\vec{E}, and in particular E⃗\vec{E} scales as 1/r21/r^2 at large distance rr, whereas the E⃗\vec{E} field generated from the linear spin current goes as 1/r31/r^3.Comment: 7 pages, 2 figure

    Influences of spin accumulation on the intrinsic spin Hall effect in two dimensional electron gases with Rashba spin-orbit coupling

    Get PDF
    In a two dimensional electron gas with Rashba spin-orbit coupling, the external electric field may cause a spin Hall current in the direction perpendicular to the electric field. This effect was called the intrinsic spin Hall effect. In this paper, we investigate the influences of spin accumulation on this intrinsic spin Hall effect. We show that due to the existence of boundaries in a real sample, the spin Hall current generated by the intrinsic spin Hall effect will cause spin accumulation near the edges of the sample, and in the presence of spin accumulation, the spin Hall conductivity will not have a universal value. The influences of spin accumulation on the intrinsic spin Hall effect in narrow strips of two dimensional electron gases with Rashba spin-orbit coupling are investigated in detail.Comment: 7 pages, 2 figure
    • …
    corecore