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The contractor renormalization groy@ORE method is applied to the SN) chain and ladders in this
paper. In our designed schemes, we show that these two classes of systems can return to their original form of
Hamiltonian after CORE transformation. Successive iteration of the transformation leads to a fixed point so
that the ground state energy and the energy gap to the ground state can be deduced. The re@ultabfaBiJ
is compared with the one by Bethe ansatz method. The transformation on spin-1/2 ladders gives a finite gap in
the excited energy spectra to the ground state in an intuitive way. The application(3p I8tders is also
discussed.
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The contractor renormalizatiofCORE) group method highly to the SW2) symmetry and an adequate designed
combines the contraction and cluster expansion techniqueSORE scheme. As a generalization, we found that their
with the real space renormalization group approach to solv€ORE scheme on S@) chain is a speciman picked out from
the electron and spin lattice problemk.was first applied to a general CORE scheme on the (8l chain. Though the
spin-1/2 Heisenberg chain and +1)-dimensional Ising SU(N) chain had been exactly solved by Bethe ansatz
model, and later to the frustrated antiferromagnets and thenethod long time agd,it is still instructive to see how
Haldane conjecture. The results are satisfactory an&ORE works in the system.
encouraging:? Since then the method has been applied to Let us start with a one-dimensional 8 chain in terms
investigate low energy physics in many strongly correlatecPf the exchange operatok=JX;P; ;.,. Here we limit our
systems-8 In this paper, we are concerned with a class ofdiscussion to the antlferromqgnet|c case by setfind>0.
models showing that CORE is at itsitical point, which  FOr @ SUN) system each sitg hasN quantum state, )
means that the symmetry of the system is restored or th#ith («=1,2,... N). The exchange operatd?;,; swaps
same form of Hamiltonian is reconstructed after the COREWO states on site§ and j+1, i.e., Pjjlj,a;j+1,8)
transformation, just like the spin-1/2 Heisenberg chdim- = i-B;i+1,a). Usually Py, can be ?ng_essed in terms of
doubtedly, this method is not limited to such a kind of sys-th® SUN) %e_nerato_rs aB; 1= % 455(1) Jal] +1)’; where ,the
tems. Though in many systems the original Hamiltonian can®Perators J(j) Sit'_Sfy the SWN) algebra [Ju(j), J(j")]
not be recovered, the lower energy physics are retained aridi’[9,J5(1) ~ 953, (i) ]. Alternatively, P; ., can also be ex-

. . . . H 14 H
studied successively after the truncation and transformatiorPr€Ssed by spin operatof&!* Many spin systems as well as
We consider the SIN) chain and ladders in this work. We SPin-obital systems concerning 80 symmetry have been

: ; -19
show that the same form of the Hamiltonian is recoveredtudied extensivel3> _ _ . .

after dividing adequately the lattice into blocks and defining " the CORE scheme, the first step is to divide the original
a truncation scheme, so that the CORE algorithm can pghain into a cham of blocks and retain adequate number of
done recursively. The range-2 result for Bl chain is com-  €Nergy levels in each block. We found two obvious schemes

pared with the Bethe ansatz solution by Sutherfaihe t© P€ readily applied to this system: one(ié-1)-site block
comparison suggests that the CORE method can give god@tltlon ywth N-state t_ryncatpnischeme A, and .the other is
result especially for largdl and relatively larger blocks. We (N*1)-site block patition withN-state truncatior(scheme
also present the results of the real-space renormalizatio)- The treatment on SW@) case in Ref. 1 obviously falls
group (RG) theory, which usually agrees qualitatively with N0 scheme B withP; ;,,=25;-S;,,+1/2 when N=2. We
the one by range-2 CORE calculatidiin many cases the will see the scheme B gives better results than scheme A.
latter can be regarded as a refined method on the former. THE'e existence of the two schemes can be understood from
spin-1/2 ladders have attracted a lot of attention since thé€ single column Young tableaux witfN-1) or (N+1)
discovery of a finite spin gap in the two-leg ladd&tétAn-  boxes. In fact the SUN) model on both(N-1)-site block
other CORE scheme based on plaquette dividing of the ladend (N+1)-site block have one uniquéN-dimensional
der had been applied to this systéft.Here we shall use a ground state space. We denote the truncated space for a
different scheme which showsSe1 magnon gap in an in- single block by ®;={|¢; 1),|#; 2, ....|¢; )} Then in the
tuitive way. Results up to range-3 are presented. range-2 CORE calculation, we should retain appropridie

It was shown by Morningstar and Weinstein that thelow levels from the exact diagonalization of two blocks. All
CORE scheme of three-site block partition and two-statghe retained low levels should have nonzero projection to the
truncation on S(R) chain recover the original form of product spac®;® ®;,,, so the eligible levels are not always
Hamiltonian. Then the resulting effective Hamiltonian can bethe lowest ones. Fortunately this job is easy to be done due to
solved iteratively and a quite satisfactory result can behe SUN) symmetry. The range-2 CORE calculation leads to
obtained! The recovery of the form of the Hamiltonian owes the effective Hamiltonian
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TABLE I. The coefficientsC; andKx in Eq. (1). —e— Bethe ansatz
-0.2- | ——RG (Scheme A)
"] | =~—Range-2 CORE (Scheme A)
RG Range-2 CORE -0.34 | —¥—RG (Scheme B) v
Scheme A —v— Range-2 CORE (Scheme B)
N C. K- C. K- 041 y
3 1 -0.5+ /
3 H i 1.0731 0.3411 & 0]
4 L g 22485  0.1787 o Ve /
5 4 i 3.3762 0.1112 ' A /
16 16 0.8 e /
J uA
RG Range-2 CORE 0.9 2 /,)/
Scheme B io] ‘: oo
N C+ K+ C+ K+ o T T T T T T
13 4 0.0 0.1 0.2 0.3 0.4 0.5
2 1 E 0.9956 0.4916 UN
3 2.1693 0.2654 2.5982 0.3084
4 3.4111 0.1728 3.9432 0.2089 FIG. 1. (Color onling The ground energy of SM) chain.
Scheme B of CORE gives better results and the numerical errors are
about —0.0106, —0.0006, 0.0021 fbk=2,3,4,respectively, com-
pared to the results by Bethe ansétee Ref. @
@-_1 B
H _ﬁz’ (= C5 +K5Pjjua), (1) ,
! 1 N(N-2 1 ~
HRC= > |- ( l + 3P|,
N-1% (N-12) (N-D° "

where the sign+ corresponds to the two schemes-A) and

B (+), P, j+1 is a renormalized exchange operator connectin%/h'Ch exhibits a ground energy coinciding with thezone by
blocksj andj+1 after each block “contracts” to a single site. Bethe ansatz method at larg¥, E,=-N(N-2)/(N°-N
The coefficientsC. and K- are listed in Table I. It can be N—oo

confirmed the range-3 Hamiltonian will include another op—+l) — ~L

eratorl?’j j+2 and the range-4 Hamiltonian will include more The t\{V(_)—Ieg _spln-1/2 ladders arouged a Iqt of attention
: ~ ~ o~ ~ ~ when a finite spin gap was observéd simple picture says

operators  like Pjji3  PjjiPii2jia Pjjs2Piejss that the ground state is a product state with the spins on each
P;j+3Pj+1j+2. Here we only give the range-2 results sincerung forming a spin singlet. Then the lowest energy excita-
higher range calculation will not change the physics. Fottion is a S=1 magnon. Here we show that our scheme of
scheme A and B, we give the results '+ 3,4,5 and2,3,4, CORE produces exactly the same picture and refined results
respectively. can be achieved following the CORE algorithm. We start
Successive application of CORE in Ed) will lead the  from the Hamiltonian
running coupling approaching a gapless fixed point. And no
phase transition is observed. The ground energy is read out H=2 (S Si+S) - Shy) +aS' 5], (4)
as !
where the indice®\ and B refer to the two rails of the lad-
c. ders, a=Jng/ Jrail is the ratio between the rung and rails
- (2)  couplings, and we have sét;=1.
(NF1)-K= Our first step is to divide the ladder into triads along the
rail direction[Fig. 2(@)]. The problem on the rail direction is

where the sigric corresponds to the two schemes. Figure 1just the SU2) chain that had been solved. Detailed calcula-
shows that the result of the range-2 CORE of scheme gion shows that the effective interaction between the two
agrees quite well with the one by Bethe ansatz method. Thelocks along the rung can also recover the Heisenberg inter-
numerical error can be reduced by higher range calculatiorction. Thus ladders with renormalized couplings can be ob-
The range-4 result fo=2 by Weinstein shows the error is tained. The second step is to parse out the effective block-
reduced to —0.0025.

In fact the traditional RG gives an effecive Hamiltonian A b
having the same form of Eq1). It can produce results con- @) Bm —> (D
sistent with CORE though not so goddhe two schemes ~ ~ — — —  7¥77F7
above are still applicable and the corresponding coefficients
can be found in Table I. The advantages of CORE are obvi- ®)
ous. In many cases one can design more flexible schemes in
CORE while selecting basic blocks and truncating at low FG, 2. (Color onling (a) Two-leg ladders. The basic blocks are
levels®-® A more careful analysis shows that RG based oOnyiads along the rail direction. The fixed point is a chain of decou-

(N-1)-site block partition scheméscheme A can give an  pled dimers(b) The unsymmetric configuration of blocks involved
effective Hamiltonian for genera\, in range-3 CORE calculation.

EO:
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TABLE Il. An example of the range-2 CORE iteration proce- | RG 100
dure ata=1. -0.450 P —— Range-2 CORE
—/\— Range-3 CORE 10
n Ey 5n An(a) : ® Other Methods >
0475F y L ©
0 0 1.0 1.0 ! > ]
1 —-0.460796 0.491582 0.81919 5,
-0:200- 0.1 10 708!
2 -0.558041 0.241653 0.64499 ° : o
5 ~0.587214 0.028706 0.420144 W o P
10 -0.587867 0.000824 0.382715 | ,f 418
15 -0.587869 0.000024 0.381603 .
20 -0.587869 6.790%7 1077 0.381571 D850 ] '
21 ~0.587869 3.338210°7 0.38157 1°6.>
22 -0.587869 1.64% 107 0.38157 0575 184
L {0.2
block interactions from all possible configurations of  -0.600b—-—1n PN [ ¥ N 1Y)
. . . . . E 2 ‘ i .00. 4 . 1.2 1. 2.
connected blocks. As defined by Morningstar and Weinstein Sl 400,6 L « ¢ 28

r connected blocks contain range-interactions withr’
=0,1,... s [r'=0 corresponds to the constant term as in Eq. FIG. 3. (Color onling The ground energy and the gap for the
(5)]. To parse out all range interactions the exact diagonalspin-1/2 two-leg ladder. The log-log plot shows that CORE and RG
ization is employed on the connected blocks. We preserdive correct gap in strong coupling limiz—c. Data by other
range-2 and range-3 results here. It is notable that thenethods are adapted from Refs. 11 and 23-25.
range-3 blocks should include a configuration in Fi¢o)2 ) )
This unsymmetric configuration may make the iteration pro\WhereC(), d(«), andA() are different from the ones in
cedure more troublesome. Eq. (5), y=0.033975.y will vary with « in the successive
The range-2 CORE result simply regains the original formiterations, y,=yn(a), -+, y1=. After n-step iterations, we
of Hamiltonian except for a constant term found that the only nonvanishing coupling is still the inter-
action along the rung\,_...(a) # 0, so the physical picture
obtained by the range-2 CORE does not change, i.e., the
ground energy and the spin gap are produced in the same
(5 ~Way _ _
As we noted above, the unsymmetric configuration of
where §=0.491582,C(a) and A(@) vary with @. The itera-  blocks in Fig. 2b) brings some troubles to the range-3
tion on the range-2 effective Hamiltonian is always appli- CORE iteration. Unlike the S(2) chain, the desired low
cable because the retained four low levels are always onievels may not always stay at the lowest positions during the
spin singlet and three spin triplets just like the (@Uchain  iterations. And sometimes it is hard to select out the eligible
case. Aftem steps of iteration on E5) we will get running  set of levels from several possible candidates since each of
coupling terms ashn:5n(8f-slﬁl+8j3-SJ-B+1)+An(a)Sf-SjB, them will lead to a recovered §P) symmetry. So different
where the coefficients are determined recursivelyz 8", iteration procedures with different results are inevitable.
An(@)= " A{[A ()] Y-, A(a)=S8A[A(@)/ 8], When these situations take place, we resort to the principle:
As(a)=A(e), Agle)=c. So the rail coupling approaches retaining the itera}tion procedurg that gives the lowest
zerod"— 0 asn— o, while the rung coupling goes to a fixed energy?? although in our observations the values of the re-
value A, ...(a)#0 for @>0 (we observed that\, ..(a) Sults only have small difference. The range-2 and range-3
.0 only whena=0, which is in agreement with the conclu- CORE results for the ground state energy and the spin gap
sion drawn by DMRG%?° and exact diagonalizatipd! So &€ |IIustr:;1§e2g in Fig. 3. For a comparison, data by other
the system flows to a fixed point exhibiting dimer covering method$!>****are presented together. The ground energy
on each rung of the ladder. The spin gap is read out a89"€€S WeI_I with thpse by o_ther methods in the whole_ range
AJa)=A,_..(a). The ground energy, is obtained by cu- of interchain couplinga. This means that CORE algrithm

mulating the constant term. Table Il gives an example of@n successively capture the low energy physics of the sys-
iterations procedure for=1 tem. The gap has relatively larger deviation at intermediate

The range-3 CORE result at the first run of iteration Con_values ofa. Nevertheless the discrepancy can be remedied

tains the next-nearest-neighbor interactions t_hrough higher range CORE calculation. The ran_ge-3 gap isa
little zigzag. This may be due to the unsymmetric configura-
1 TA =B = tion of range-3 blocks in Fig.(®). It is noteworthy that RG
@ ==N"1- AL 8.8 g 9 y
H 3§j:[ Cla) + 5(a)(8f Sﬁﬁsl S+ gives a gap simply asASRG=a, which captures the correct
o o behaviour of the gap at strong coupling linait— .1

+A@)S} - SP+Q(a)(S) - S2, +S] - Sy We also applied CORE to the two-leg ) ladders,H

=2[(Pjaj+1atPigjsip) taPjajel.  The  applicable

schemes are presented in Fig$a)44(c). Notice that all

HE =25 (- Cla) + a8 8+ 5 )+ A@S) ],
I

+ 7(530\ 'AS‘]'B\+2 + 'é:B 'éjB+2)]r (6)
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-0.5+ °y —O— Scheme (a) scheme(b) and (c) will return to a two-leg SU3) ladder,
'0.6'X’A‘A,A—A—A—A—A‘A\LA \O\O ﬁg::mi ::; hn:5n(Pj,A;j+1,A+ Pj,B;j+1,B)+An(a)Pj,A;j,B’ but we observed
Q.74 . \o\o that the running couplings of the rail directiofy and the
0.8 "'a\Q:\o rung direction A, will go to infinitesimals of the same
L -0.9] AN ordef® as we push the iteration steps to infinity;-, so a
) (a)]m (b)m o gapless phase is also obtained, which agrees with the result
-1.0- o
Yo, of schemega). The SU3) model on a four-leg ladder can be
111 @ CT 1 | 1] ] N analyzed in similar schemes and a gapless result is also ex-
-1.24 Yo pected. The result is reminiscent of the (8Umodel on a
00 05 10 15 20 25 chain and on a three-leg ladder, which are also gapless. But
o unfortunately the above schemes or their analogs are not ap-

. plicable for the two-leg SU}) ladders, which exhibits

FIG. 4. (Color onling The ground energy of the two-leg &)  plaquette singlet-multiplet excitatid&232’One may have to
ladders. The inset&), (b), and(c) show the schemes used in the yasort to other kind of schemes.

calculation. In conclusion, we have studied the @0 chain and lad-

) o ders by the CORE schemes. We have shown that the effec-
blocks are equivalent and a three-state truncation is made Wye Hamiltonian in the appropriate CORE schemes can re-
each scheme. Schente) should be valid when the rung gain its original form such that it approaches a fixed point by
interactiona is large enough. While for smadi, the schemes jteration of the CORE schemes. The ground state energy and
(@ («<1.0) and (b) («<1.58 are appropriate and scheme the |owest excitations can be deduced from the fixed point.
(b) is better tharta). All three schemes Igad to the fixed point The results show that the $N) chain and the two-leg SB)
with zero gap. We see that scherta will be mapped to a  |adders are gapless, while the two-leg spin-1/2 ladder exhib-

SU(3) chain, which had been solved previously and gives ates gapped phase originated from the rung dimmerization.
zero gap. And after the first mapping we applied four-site

block partition scheme on the chain in the successive itera- This work was supported by the Research Grant Council
tion steps to produce the ground energy in Fig. 4. Whileof Hong Kong under the Project No. HKU7038/04P.
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