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In a two-dimensional electron gas with Rashba spin-orbit coupling, the external electric field may cause a
spin Hall current in the direction perpendicular to the electric field. This effect was called the intrinsic spin Hall
effect. In this paper, we investigate the influences of spin accumulation on this intrinsic spin Hall effect. We
show that due to the existence of boundaries in a real sample, the spin Hall current generated by the intrinsic
spin Hall effect will cause spin accumulation near the edges of the sample, and in the presence of spin
accumulation, the spin Hall conductivity will not have a universal value. The influences of spin accumulation
on the intrinsic spin Hall effect in narrow strips of two-dimensional electron gases with Rashba spin-orbit
coupling are investigated in detail.

DOI: 10.1103/PhysRevB.70.195343 PACS number(s): 72.10.2d, 72.15.Gd, 73.50.Jt

I. INTRODUCTION

Spintronics, which aims at the manipulation of the elec-
tron’s spin degree of freedom in electronic devices, has be-
come an emerging field of condensed matter physics for its
potential application in information industry.1–3 Though
originally many spintronic concepts involve ferromagnetic
metals since spins in this kind of system behave collectively
and hence are easy to be controlled,4–8 spintronics in semi-
conductors is more interesting because doped and hetero-
junction formation can be used to design some specific de-
vices. It is anticipated that combining the advantages of
semiconductors with the concepts of spintronics will yield
fascinating new electronic devices and open the way to a
new field of physics, i.e., semiconductor spintronics. How-
ever, at present many great challenges still remain in this
exciting quest. Among them, an issue that is fundamentally
important in semiconductor spintronics and has not yet been
resolved is how to achieve efficient injections of spins into
nonmagnetic semiconductors at room temperature.9–13 The
usage of ferromagnetic metals as sources of spin injection is
not practical because most of the spin polarizations will be
lost at the interface between the metal and the semiconductor
due to the large conductivity mismatch.9,10 Another possible
approach is to use ferromagnetic semiconductors(such as
Ga1−xMnxAs) instead of ferromagnetic metals as sources of
spin injection. In this approach, the problem of conductivity
mismatch does not exist and hence efficient injections of
spins into nonmagnetic semiconductors can truly be
achieved.11–13But for practical use at room temperatures, the
Curie temperatures of ferromagnetic semiconductors are still
too low. Thus, from both the experimental and theoretical
points of view, more great efforts are still needed in order to
achieve efficient injections of spins in nonmagnetic semicon-
ductors at room temperatures. Recently, a surprising effect
was predicted theoretically that an electric field may cause a
quantum spin Hall current in the direction perpendicular to
the electric field in conventional hole-doped semiconductors

(such as Si, Ge, and GaAs)14 or in two dimensional electron
gases(2DEGs) with Rashba spin-orbit coupling.15 This in-
trinsic spin Hall effect might offer a new approach for
achieving efficient injections of spins in nonmagnetic semi-
conductors and reveal a new avenue in the spintronics re-
search.

In this paper, we study the influences of spin accumula-
tion on the intrinsic spin Hall effect in 2DEGs with Rashba
spin-orbit coupling. From the standpoint of spintronic appli-
cations, it is important to understand whether the spin Hall
currents predicted in Refs. 14 and 15 aretransportspin cur-
rents, i.e., whether they can be employed for transporting
spins. An important feature of transport spin currents is that
they will induce nonequilibrium spin accumulation at some
specific locations, for example, at the boundaries of a sample
or at the interfaces between two different materials.6–8 On
the other hand, if spin accumulation was caused in a sample
due to the flow of a spin current, the spin current will also be
changed significantly by the spin accumulation.6–8 So in a
full treatment of the intrinsic spin Hall effect, the interplay
between the spin Hall current and the spin accumulation
must be taken into account. A detailed theoretical investiga-
tion of the influences of spin accumulation on the intrinsic
spin Hall effect in hole-doped semiconductors was presented
in Ref. 16. In the present paper, we will use a similar method
as was applied in Ref. 16 to investigate the influences of spin
accumulation on the intrinsic spin Hall effect in 2DEGs with
Rashba spin-orbit coupling. We will show that in contrast
with what was found in Refs. 15, 17, and 18, in the presence
of spin accumulation, the spin Hall conductivity in the intrin-
sic spin Hall effect in a 2DEG with Rashba spin-orbit cou-
pling does nothave a universal value, and in order to calcu-
late correctly the spin Hall current and the spin Hall
conductivity in a real sample with boundaries, the influences
of spin accumulation need to be taken into account. The
paper will be organized as follows: In Sec. II, we will first
present a brief introduction to the intrinsic spin Hall effect in
a 2DEG in the absence of spin accumulation and impurity
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scattering. In Sec. III, the influences of spin accumulation
and impurity scattering will be taken into account. In Sec. IV,
by use of the formulas derived in Sec. III, the influences of
spin accumulation on the intrinsic spin Hall effect in a nar-
row strip of a 2DEG will be discussed in detail.

II. INTRINSIC SPIN HALL EFFECT IN THE ABSENCE OF
SPIN ACCUMULATION AND IMPURITY SCATTERING

In this paper, we will use a slightly different method from
what was applied in Refs. 15 and 17 to discuss the intrinsic
spin Hall effect in 2DEGs with Rashba spin-orbit coupling.
The merit of this method is that the influences of spin accu-
mulation can be easily included. For clarity, in this section
we first present a brief introduction to the intrinsic spin Hall
effect in the absence of spin accumulation and impurity scat-
tering. We will show that our method will recover the same
results as was obtained in Refs. 15 and 17 if spin accumula-
tion and impurity scattering are neglected.

In the momentum representation, the single-particle
Hamiltonian for a 2DEG with Rashba spin-orbit coupling
reads19 as

Ĥ0 =
"2k2

2m
− asez 3 kd · s =

"2k2

2m
− akscosusy − sinusxd,

s1d

where ez is the unit vector perpendicular to the two-
dimensional plane,k =sk cosu ,k sinud is the momentum of
an electron,s=ssx,sy,szd the Pauli matrices, anda the
Rashba spin-orbit coupling constant. The Hamiltonian(1)
can be diagonalized exactly. The eigenenergies are given by

ekl =
"2k2

2m
− lak sl = ± 1d, s2d

and the corresponding spinor eigenstates are defined by

ukll =
1
Î2

S− ile−iu

1
D . s3d

The expectation value of the spin of an electron which is in
the spinor eigenstateukll will be given by

Sl
s0dskd =

"

2
kklusukll = Sl,x

s0dskdex + Sl,y
s0d skdey, s4d

whereex andey are the unit vectors along thex andy axes in
the plane, respectively, andSl,x

s0dskd andSl,y
s0d skd are thex and

y components of the spin, which are given by

Sl,x
s0dskd =

"

2
kklusxukll = l

"ky

2k
, s5d

Sl,y
s0d skd =

"

2
kklusyukll = − l

"kx

2k
. s6d

Equations(4)–(6) show that the eigenstates of the Hamil-
tonian (1) are spin polarized in the in-plane directions, and
the spin-polarization directions depend on the momentumk.

When an external electric field is applied in thex direc-
tion, the total Hamiltonian of the system will be given by

Ĥ=Ĥ0+eE ·x, where E=Exex is the external electric field
and −e the charge of the electron. The equation of motion for
the electron’s position and spin degrees of freedom under the
action of the external electric field can be obtained directly
from the Heisenberg equation, and the results read as

dk

dt
=

eE

"
, s7d

dS

dt
= heff 3 S, s8d

wherehef f=s2a /"dskyex−kxeyd is an effective magnetic field
felt by an electron with momentumk due to the Rashba
spin-orbit coupling. The time variation of the electron spin
which is initially in the spinor eigenstateukll [i.e., Sst=0d
=s" /2dkkluŝukll] can be obtained by solving Eqs.(7) and
(8) simultaneously. In this paper we will consider only the
linear response of the transport property to the electric field.
In the linear response regime, Eqs.(7) and (8) can be inte-
grated analytically by use of the same method of Ref. 15, and
one can find that under the action of the external electric
field, the spin of an electron with momentumk and initially
in the spinor eigenstateukll will become

Sl,xskd . Sl,x
s0dskd, s9d

Sl,yskd . Sl,y
s0d skd, s10d

Sl,zskd . − l
e"ky

4ak3Ex, s11d

where Sl,iskd is the ith component of the spin. Equations
(9)–(11) show that an applied electric field in thex direction
will cause the spin to tilt in the perpendicular direction by an
amount proportional toky. Due to this fact, the application of
an external electric field in thex direction will induce a spin
Hall current in they direction with spin parallel to thez
direction. The spin Hall current can be calculated by the
following formula:

Jy
Sz = o

l
E d2k

s2pd2Sl,zskds"ky/mdflskd, s12d

where flskd is the probability distribution function of con-
duction electrons. If spin accumulation and electron-impurity
scattering can be neglected,flskd can be given simply by
the Fermi-Dirac equilibrium distribution function, i.e.,
flskd= f0sekld;fexpfbsekl−eFdg+1g−1, whereb=1/kBT and
eF is the Fermi energy. Then one can find that in the usual
case where both spin-orbit split bands are occupied, the spin
Hall current Jy

Sz and the spin Hall conductivityss will be
given by15
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Jy
Sz = ssEx, ss =

e

8p
. s13d

Equation(13) is the central result of Ref. 15, which was also
obtained by several other groups with different theoretical
approaches.17 Equation(13) shows that as long as both spin-
orbit split bands are occupied, the spin Hall conductivity will
have auniversalvalue, independent of both the Rashba spin-
orbit coupling strength and of the density of conduction elec-
trons. Though Eq.(13) was obtained in the clean limit, recent
numerical simulation shows that it is not suppressed com-
pletely in the presence of weak disorder, providing that the
sample size exceeds the localization length.18 It is also im-
portant to note that unlike the similar effect conceived by
Hirsch,20 which is caused by spin-orbit dependent aniso-
tropic scattering from impurities and will vanish in the weak
scattering limit,20–22 the spin Hall effect described by Eq.
(13) has a quantum nature and is purely intrinsic, i.e., it does
not rely on any anisotropic scattering from impurities. Of
course, it should be pointed out that though the mechanism
of the intrinsic spin Hall effect described above does not
involve impurity scattering, it does not mean that impurity
scattering has no significant influences on the effect. The
reason is that in a real sample, due to the existence of bound-
aries, nonequilibrium spin accumulation will be caused in-
evitably near the edges of the sample when the spin Hall
current circulates in it, and in the presence of nonequilibrium
spin accumulation, spin diffusion will be induced by
electron-impurity scattering and, hence, the spin Hall current
may also be changed significantly from what was given by
Eq. (13). Thus in order to calculate correctly the spin Hall
current and the spin Hall conductivity in a real sample with
boundaries, the influences of spin accumulation and electron-
impurity scattering need to be considered.

III. INFLUENCES OF SPIN ACCUMULATION
AND IMPURITY SCATTERING

In the presence of spin accumulation and electron-
impurity scattering, the distribution function of conduction
electrons can no longer be given simply by the Fermi-Dirac
equilibrium distribution function but may be derived by solv-
ing the Boltzmann transport equation. In a steady(but non-
equilibrium) state, the Boltzmann equation reads as

Vlskd · ¹ flsr ,kd − eEext·Vlskd
]flsr ,kd
]elskd

= −FS ]fl

]t
D

coll.

sl→ld

+ S ]fl

]t
D

coll.

sl→l̄dG , s14d

where Vlskd=¹kekl /" is the velocity of conduction elec-
trons,Eext=Exex is the external electric field applied in thex
direction, andflsr ,kd is the distribution function. The colli-

sion terms]fl /]tdcoll.
sl→l8d describes the changes of the distri-

bution function due to the intra-bandsl8=ld and/or inter-

bandsl8= l̄d electron-impurity scattering, which is given by

S ]fl

]t
D

coll

sl→l8d

= −E d2k8

s2pd2vl,l8sk,k8ddselskd − el8sk8dd

3 fflsr ,kd − fl8sr ,k8dg, s15d

wherevl,l8sk ,k8d is the rates of an electron to be scattered
from the stateukll into the stateuk8l8l by impurity scatter-
ing.

The Boltzmann equation(14) can be solved by the relax-
ation time approximation method. Within the relaxation time
approximation and in the linear response regime, the system
can be considered only slightly deviated from the equilib-
rium state, thus the total distributionflsr ,kd can be ex-
pressed as the sum of the equilibrium distribution function
f0sekld and the nonequilibrium ones as the following:

flsr ,kd = f 0sekld − emlsr d
]f 0sekld

]ekl

+ etlskdElsr d ·Vlskd
]f 0s«kld

]«kl

. s16d

Here the second term denotes the change of the distribution
function due to the occurrence of nonequilibrium spin accu-
mulation in the sample, with −emlsr d sl= ± d denoting the
band- and position-dependent shifts of the Fermi level in the
nonequilibrium state, which characterize the imbalance of
the filling of conduction electrons in the two spin-orbit split
bands in the presence of nonequilibrium spin accumulation.
The third term in Eq.(16) denotes the changes of the distri-
bution function due to the movement of conduction electrons
under the action of an effective electric fieldElsr d, with
tlskd denoting the total relaxation time of conduction elec-
trons with momentumk, which is determined by the
electron-impurity scattering. Because the occurrence of non-
equilibrium spin accumulation will cause spin diffusion in
the sample, the effective electric fieldElsr d should be given
by Elsr d=Eext− ¹mlsr d, i.e., in addition to the external elec-
tric field Eext, conduction electrons will also feel an effective
field given by the gradients of the band- and position-
dependent shifts of the Fermi level.6–8 Substituting Eq.(16)
into Eqs.(14) and (15), the left-hand side of the Boltzmann
equation becomes

Lhs= − e
]f 0sekld

]ekl

hElsr d ·Vlskd

− tlskdVlskd · =fElsr d ·Vlskdgj, s17d

and the right-hand side of the Boltzmann equation becomes

Rhs= − e
]f0sekld

]ekl
HF tlskd

tl
↑↑skd

+
tlskd
tl
↑↓skdGfElsr d ·Vlskdg

−
mlsr d − m−lsr d

tl
↑↓skd J , s18d

where tl
↑↑skd and tl

↑↓skd are the intra-band and inter-band
transition relaxation times, respectively, which are defined by
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tl
↑↑skd = FE d2k8

s2pd2vl,lsk,k8dd„elskd − elsk8d…G−1

;

s19d

tl
↑↓skd = FE d2k8

s2pd2vl,−lsk,k8dd„elskd − e−lsk8d…G−1

.

s20d

By integrating both the left-hand side and the right-hand side
of the Boltzmann equation, one can find that the total relax-
ation timetl of conduction electrons should be given by

tlskd = F 1

tl
↑↑skd

+
1

tl
↑↓skdG−1

, s21d

and the band- and position-dependent shifts of the Fermi
level satisfy the following equation:

¹2mlsr d =
mlsr d − m−lsr d

Dl
2 , s22d

where Dl;fsVF
ld2tFtF

↑↓g1/2, with VF
l denoting the band-

dependent Fermi velocity andtF
↑↓ the inter-band-transition

relaxation time andtF the total relaxation time of conduction
electrons at the Fermi level, respectively.(For simplicity, we
assume thattF andtF

↑↓ are band independent.) From Eq.(22),
one can see that the relative shifts of the Fermi level in the
two spin-orbit split bands, given bym+sr d−m−sr d, satisfy the
following diffusion equation:

¹2fm+sr d − m−sr dg =
m+sr d − m−sr d

D2 , s23d

whereD is the spin-diffusion length, defined by

D = F 1

D+
2 +

1

D−
2G−1/2

. s24d

In addition to Eqs.(22) and (23), the band-dependent shifts
of the Fermi level should also satisfy the charge neutrality
condition, which requires that the net changes of the charge
density due to the band-dependent shifts of the Fermi level,
given bydrsr d=eolefd2k/ s2pd2gfflsr ,kd− f l

0sekldg, should
be zero. This requirement arises from the fact that according
to the symmetry of the Hamiltonian(1), in the direction per-
pendicular to the external electric field, no charge Hall cur-
rent will be generated, so the occurrence of spin accumula-
tion due to the flow of the spin Hall current does not result in
charge accumulation. Due to this requirement, one can show
that in addition to Eqs.(22) and (23), the band-dependent
shifts of the Fermi level should also satisfy the following
equation:

o
l=±

klFmlsr d = 0, s25d

whereklF is the band-dependent wave number at the Fermi
level. After the band-dependent shifts of the Fermi level are
determined, the spin Hall current can be obtained by insert-
ing Eq.(11) and Eq.(16) into Eq.(12); then one can find that
in the usual case where both spin-orbit split bands are

occupied,23 the spin Hall current and the spin Hall conduc-
tivity will be given by

Jy
Szsr d = sssr dEx, s26d

sssr d =
e

8p
S1 −

efm+sr d − m−sr dg
2afsma/"2d2 + 2meF/"2g1/2D . s27d

Equations(26) and (27) show that the spin accumulation
may have some significant influences on the intrinsic spin
Hall effect in a 2DEG. First, in the presence of spin accumu-
lation, the spin Hall conductivity will be aposition-
dependentquantity anddoes nothave a universal value, i.e.,
it will depend on the Rashba spin-orbit coupling constant and
on the density of conduction electrons. This is very different
from what was shown in Eq.(13). Second, in the presence of
spin accumulation, the spin Hall current may be decreased
substantially from the corresponding value obtained in the
absence of spin accumulation, and the decrease will be de-
termined bym+sr d−m−sr d, i.e., proportional to the relative
shifts of the Fermi level in the two spin-orbit split bands.

IV. RESULTS AND DISCUSSIONS

Equations (23) and (25)–(27) constitute a set of self-
consistent equations, from which both the spin Hall current
and the spin accumulation can be obtained. In this section,
we apply these formulas to discuss the intrinsic spin Hall in
a narrow strip of a 2DEG with Rashba spin-orbit coupling.
Narrow strips are the usual geometry applied in the experi-
mental measurement of the Hall effect, including the spin
Hall effect.20–22 In the following we will assume that the
longitudinal direction of the strip is along thex axis and the
transverse direction along they axis and the normal of the
2D plane along thez axis, respectively, and an external elec-
tric field Ex is applied in the longitudinal direction of the
strip. According to Eqs.(26) and (27), in order to calculate
the spin Hall currentJy

Sz caused by the longitudinal external
electric fieldEx, one must first find out the band-dependent
shifts m+sr d andm−sr d of the Fermi level. For simplicity, we
assume that the lengthL of the strip is much larger than its
width w so that spin diffusion in the longitudinal direction of
the strip can be neglected. In such a case, only transverse
spin accumulation needs to be considered, andmlsr d, Jy

Szsr d,
andsssr d will all depend only on they coordinates. From Eq.
(23), m+syd−m−syd can be expressed as

mlsyd − m−lsyd = Aey/D1 + Be−y/D1, s28d

whereA andB are two constant coefficients that need to be
determined by appropriate boundary conditions. In this pa-
per, we will consider the transverse-open-circuit boundary
condition. In the transverse-open-circuit boundary condition,
the spin Hall current at the two boundaries of the sample,
which are assumed to be located aty= ±w/2, should be zero,
i.e.,

Jy
SzSy = ±

w

2
D = 0. s29d

Substituting Eq.(28) into Eqs.(26) and (27) and by use of
the above boundary condition, the coefficientsA andB can
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be determined. Then the band- and position-dependent shifts
of the Fermi level in the strip can be obtained, and we get

m+syd =
M0 coshsy/Dd
2 coshsw/2DdF1 +

D2

D0
2G , s30d

m−syd =
M0 coshsy/Dd
2 coshsw/2DdFD2

D0
2 − 1G , s31d

whereM0 andD0 are defined by

M0 =
2a

e
Îm2a2

"4 +
2meF

"2 , s32d

D0 = F 1

D+
2 −

1

D−
2G−1/2

. s33d

Here Dl sl= ± d has been defined in Eq.(22). In obtaining
Eqs.(30) and (31), the charge neutrality condition(25) was
also used. Aftermlsyd is determined, according to Eqs.(26)
and(27), the spin Hall current and the spin Hall conductivity
will also be obtained, and the results read as

Jy
Szsyd = sssydEx, s34d

sssyd =
e

8p
F1 −

coshsy/Dd
coshsw/2DdG . s35d

Equations(34) and (35) show that, due to the influences of
spin accumulation, the spatial distribution of the spin Hall
current in a sample will be highly inhomogeneous and the
spin Hall conductivity is sensitively position dependent. The
spin Hall current and the spin Hall conductivity and their
spatial distributions will also have sensitive dependences on
the spin diffusion lengthD and the sample widthw. This was
shown in Fig. 1, where we have plotted the transverse spatial
distributions of the spin Hall currents in three distinct cases

with different ratios ofD /w. From Fig. 1, one can see that if
w!D, the spin Hall current will be negligibly small in the
sample, i.e.,Jy

Szsyd.0 everywhere. On the other hand, ifw
@D, the spin Hall conductivity will be approximately a con-
stant atuyu!w/2, i.e., sssyd=Jy

Szsyd /Ex.e/8p at uyu!w/2,
which is independent of both the Rashba spin-orbit coupling
strength and of the density of conduction electrons. Butsssyd
will decrease to zero asy→ ±w/2.

The spin accumulation caused by the longitudinal electric
field Ex can be calculated through the following formula:

kSl = o
l
E d2k

s2pd2Slskdflsr ,kd, s36d

whereSlskd has been given in Eqs.(9)–(11). By inserting
Eq. (16) and Eqs.(9)–(11) into Eq.(36) and with the help of
Eqs.(30) and(31), one can find that both they component of
kSl (the in-plane spin accumulation) and thez component of
kSl (the perpendicular spin accumulation) are nonzero,

kSyl =
ematFEx

4p"2 , s37d

kSzl =
eEx

4p
S mtF

tF
↑↓eF

D1/2S1 +
a2m

"2eF
D sinhsy/Dd

coshsw/2Dd
. s38d

Equations(37) and (38) show that both the in-plane and the
perpendicular spin accumulation are proportional to the lon-
gitudinal electric fieldEx, but there are some significant dif-
ferences between them. The in-plane spin accumulation is
homogeneously distributed in the sample and independent of
both the spin diffusion lengthD and of the sample widthw.
However, the spatial distribution of the perpendicular spin
accumulation is highly inhomogeneous and its magnitude de-
pends sensitively on the spin diffusion lengthD and on the
sample widthw. These differences arise from the fact that
the in-plane and the perpendicular spin accumulation are
caused by a very different mechanism. In fact, it was known
long time ago that in a 2DEG with Rashba spin-orbit cou-
pling, an applied in-plane electric field will induce a homo-
geneous in-plane spin accumulation polarized in the direc-
tion perpendicular to the electric field,24,25 but the in-plane
spin accumulation has nothing to do with the intrinsic spin
Hall effect. From the theoretical viewpoints, the in-plane
spin accumulation is caused by the combined action of the
spin-orbit coupling, absence of inversion symmetry, and the
time-reversal symmetry-breaking in the electric field.24,25

Since the in-plane spin accumulation has been investigated
in detail in previous literature and it has no relation with the
intrinsic spin Hall effect, we will not discuss it again in the
present paper. Unlike the in-plane spin accumulation, the
perpendicular spin accumulation given by Eq.(38) is caused
by the intrinsic spin Hall effect, so its spatial distribution is
highly inhomogeneous and its magnitude depends sensitively
on the spin diffusion lengthD and on the sample widthw.
This was illustrated clearly in Fig. 2, where we have plotted
the transverse spatial distributions of the perpendicular spin
accumulation in three distinct cases with different ratios of
D /w. From Fig. 2 and Eq.(38), one can see that the perpen-

FIG. 1. An illustration of the transverse spatial distributions of
the spin Hall currents in three distinct cases with different ratios of
D /w. The parameters used are the sample widthw=10 mm; the
spin diffusion lengthD=1 mm (the solid line), 10 mm (the dashed
line), and 100mm (the dotted line).
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dicular spin accumulation is maximum at the edges of the
sample, and the perpendicular spin accumulation at the edges
of the sample will increase with the increase of the width of
the sample. When the widthw of the sample is much larger
than the spin diffusion lengthD, the perpendicular spin ac-
cumulation at the edges of the sample will approach a maxi-
mum value ofse/4pdExsmtF /tF

↑↓eFd1/2s1+a2m/"2eFd, which
is independent of the sample widthw. This will be a merit
for the experimental measurement of the effect. In order to
get a quantitative estimation of the perpendicular spin accu-
mulation, let us consider some actual experimental param-
eters. In current 2DEG high quality samples,15,17,26the typi-
cal carrier concentrations range from 531011 to 1012 cm−2,
the strength of the Rashba spin-orbit coupling is on the order
of 1310−11–5310−11 eV m, the effective mass of conduc-
tion electrons is about 0.05me, the relaxation time is typically
1 ps, the spin diffusion length is about 1mm, and the Fermi
energyeF is about 20–50 meV. If one considers a sample
with the width w=10 mm (much larger than the spin diffu-
sion length) and the external fieldeEx=10 KeV/m, then

from Eq. (38) one can estimate that the perpendicular spin
accumulation at the edges of the sample can be as large as
10−23 J·s /m2. This magnitude should be large enough to be
detected experimentally.

In conclusion, in this paper we have investigated the in-
fluences of spin accumulation on the intrinsic spin Hall effect
in 2DEGs with Rashba spin-orbit coupling. We have pre-
sented a detailed theoretical analysis on the interplay be-
tween the spin Hall current and spin accumulation in the
intrinsic spin Hall effect in a 2DEG. We have shown that in
the presence of spin accumulation, the spin Hall conductivity
will not have a universal value. The spin Hall current and
spin accumulation in narrow strips of 2DEGs with Rashba
spin-orbit coupling was calculated explicitly. The results
show that in order to calculate correctly the spin Hall current
and the spin Hall conductivity in a real sample with bound-
aries, the influences of spin accumulation need to be taken
into account. Recently, Rashba pointed out that the Hamil-
tonian (1) implies that there exist nonvanishing dissipation-
less spin currents even in the thermodynamic equilibrium
state (i.e., in the absence of the external electric field).27

These background spin currents are not associated with real
spin transports but spurious effects caused by the lacking of
the time-reversal symmetry implied in the Hamiltonian(1).
Due to this fact, a procedure for eliminating the spurious
effects of these background spin currents should be devised
in calculating transport spin currents if the background cur-
rents contribute to the calculation. But for the intrinsic spin
Hall effect discussed in the present paper, the background
spin currents do not contribute to the calculation of the spin
Hall current due to the following reasons. First, the spin Hall
current is polarized in the direction perpendicular to the 2D
plane, while the background spin currents are polarized in
the 2D plane. Second, the spin Hall current is a dynamic
response of the spins to the external electric field and will
vanish in the absence of the electric field, but the background
spin currents are independent of the electric field. Due to
these reasons, the background spin currents do not present in
the calculation of the spin Hall current and hence do not need
to be considered in the present paper.
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