108 research outputs found

    Adaptive computation of multiscale entropy and its application in EEG signals for monitoring depth of anesthesia during surgery

    Get PDF
    Entropy as an estimate of complexity of the electroencephalogram is an effective parameter for monitoring the depth of anesthesia (DOA) during surgery. Multiscale entropy (MSE) is useful to evaluate the complexity of signals over different time scales. However, the limitation of the length of processed signal is a problem due to observing the variation of sample entropy (SE) on different scales. In this study, the adaptive resampling procedure is employed to replace the process of coarse-graining in MSE. According to the analysis of various signals and practical EEG signals, it is feasible to calculate the SE from the adaptive resampled signals, and it has the highly similar results with the original MSE at small scales. The distribution of the MSE of EEG during the whole surgery based on adaptive resampling process is able to show the detailed variation of SE in small scales and complexity of EEG, which could help anesthesiologists evaluate the status of patients.The Center for Dynamical Biomarkers and Translational Medicine, National Central University, Taiwan which is sponsored by National Science Council (Grant Number: NSC 100-2911-I-008-001). Also, it was supported by Chung-Shan Institute of Science & Technology in Taiwan (Grant Numbers: CSIST-095-V101 and CSIST-095-V102). Furthermore, it was supported by the National Science Foundation of China (No.50935005)

    Specialized dynamical properties of promiscuous residues revealed by simulated conformational ensembles

    Get PDF
    The ability to interact with different partners is one of the most important features in proteins. Proteins that bind a large number of partners (hubs) have been often associated with intrinsic disorder. However, many examples exist of hubs with an ordered structure, and evidence of a general mechanism promoting promiscuity in ordered proteins is still elusive. An intriguing hypothesis is that promiscuous binding sites have specific dynamical properties, distinct from the rest of the interface and pre-existing in the protein isolated state. Here, we present the first comprehensive study of the intrinsic dynamics of promiscuous residues in a large protein data set. Different computational methods, from coarse-grained elastic models to geometry-based sampling methods and to full-atom Molecular Dynamics simulations, were used to generate conformational ensembles for the isolated proteins. The flexibility and dynamic correlations of interface residues with a different degree of binding promiscuity were calculated and compared considering side chain and backbone motions, the latter both on a local and on a global scale. The study revealed that (a) promiscuous residues tend to be more flexible than nonpromiscuous ones, (b) this additional flexibility has a higher degree of organization, and (c) evolutionary conservation and binding promiscuity have opposite effects on intrinsic dynamics. Findings on simulated ensembles were also validated on ensembles of experimental structures extracted from the Protein Data Bank (PDB). Additionally, the low occurrence of single nucleotide polymorphisms observed for promiscuous residues indicated a tendency to preserve binding diversity at these positions. A case study on two ubiquitin-like proteins exemplifies how binding promiscuity in evolutionary related proteins can be modulated by the fine-tuning of the interface dynamics. The interplay between promiscuity and flexibility highlighted here can inspire new directions in protein-protein interaction prediction and design methods. © 2013 American Chemical Society

    Gut mucosal DAMPs in IBD: From mechanisms to therapeutic implications

    Get PDF
    Endogenous damage-associated molecular patterns (DAMPs) are released during tissue damage and have increasingly recognized roles in the etiology of many human diseases. The inflammatory bowel diseases (IBD), ulcerative colitis (UC) and Crohn’s disease (CD), are immune-mediated conditions where high levels of DAMPs are observed. DAMPs such as calprotectin (S100A8/9) have an established clinical role as a biomarker in IBD. In this review, we use IBD as an archetypal common chronic inflammatory disease to focus on the conceptual and evidential importance of DAMPs in pathogenesis and why DAMPs represent an entirely new class of targets for clinical translation. </p

    Pulse duration and wavelength stability measurements of a midinfrared free-electron laser

    Get PDF
    We report the pulse duration and wavelength stability measurements of a midinfrared free-electron laser (FEL) where the wavelength fluctuation may not be negligible. The technique we employ is a fringe-resolved autocorrelation (FRAC) method that has good sensitivity on not only the pulse duration and the chirp but also the wavelength stability. By the simple manipulation of experimental FRAC signals, we can obtain the pulse duration even if the amounts of the chirp and the wavelength stability are not known in advance, which is further used to estimate the wavelength stability. Through this procedure we find that the pulse duration of the Kyoto University FEL at 12 μm is about 0.58 ps without any notable chirp, and the wavelength stability is about 1.3%. We also carry out separate experiments for intensity autocorrelation and sum-frequency mixing. The difference we find for pulse duration and wavelength stability by the different measurements is attributed to the different operation conditions of FEL

    Characterization of non-Gaussian mid-infrared free-electron laser beams by the knife-edge method

    Get PDF
    We report the characterization of mid-infrared free-electron laser (FEL) beams at the wavelength of 11 μm by the knife-edge method. From the knife-edge data we find that the FEL beam has a non-Gaussian shape. To represent the non-Gaussian beam shape we employ two methods: fitting the knife-edge data to some analytical functions with a few free parameters and numerical smoothing of the knife-edge data. Both methods work equally well. Using those data we can reconstruct the two-dimensional (2D) beam profiles at different positions around the focus by assuming that the 2D intensity distribution function is separable in x (horizontal) and y (vertical) directions. Using the 2D beam profiles at different positions around the focus, we find that the beam propagation factor (M2 factor) is ∼1.1 in both x and y directions. As a cross-check, we also carry out the burn pattern experiment to find that the behavior of the focused FEL beam along the propagation is consistent with the results obtained by the knife-edge method

    Code location based forwarding technique in opportunistic network

    No full text
    In opportunistic network, the nodes have no knowledge regarding network topology. Hence, forwarding from the source node to the target destination node is a challenging issue. A connection between two nodes is unstable in opportunistic network, but the store-carry-forward scheme and node's mobility enable nodes to dissemination information between them. Flooding forward technique delivers message to every encounter node in transmission range. It incurs network congestion and consumes amount of network resources. This paper presents the location code-based data dissemination forward technique which utilizes the similarity between neighbor node's location code and the destination node's location code. The match degree approach is used to identify the relay node for a better way to disseminate data in opportunistic network. The experimental results show that code location approach delivers messages to the target destination with less overheads, and better performance as compared to flooding approach
    corecore