3,983 research outputs found
Tianshengyuan-1 (TSY-1) regulates cellular Telomerase activity by methylation of TERT promoter.
Telomere and Telomerase have recently been explored as anti-aging and anti-cancer drug targets with only limited success. Previously we showed that the Chinese herbal medicine Tianshengyuan-1 (TSY-1), an agent used to treat bone marrow deficiency, has a profound effect on stimulating Telomerase activity in hematopoietic cells. Here, the mechanism of TSY-1 on cellular Telomerase activity was further investigated using HL60, a promyelocytic leukemia cell line, normal peripheral blood mononuclear cells, and CD34+ hematopoietic stem cells derived from umbilical cord blood. TSY-1 increases Telomerase activity in normal peripheral blood mononuclear cells and CD34+ hematopoietic stem cells with innately low Telomerase activity but decreases Telomerase activity in HL60 cells with high intrinsic Telomerase activity, both in a dose-response manner. Gene profiling analysis identified Telomerase reverse transcriptase (TERT) as the potential target gene associated with the TSY-1 effect, which was verified by both RT-PCR and western blot analysis. The β-galactosidase reporter staining assay showed that the effect of TSY-1 on Telomerase activity correlates with cell senescence. TSY-1 induced hypomethylation within TERT core promoter in HL60 cells but induced hypermethylation within TERT core promoter in normal peripheral blood mononuclear cells and CD34+ hematopoietic stem cells. TSY-1 appears to affect the Telomerase activity in different cell lines differently and the effect is associated with TERT expression, possibly via the methylation of TERT promoter
LightNet: A Novel Lightweight Convolutional Network for Brain Tumor Segmentation in Healthcare
Diagnosis, treatment planning, surveillance, and the monitoring of clinical trials for brain diseases all benefit greatly from neuroimaging-based tumor segmentation. Recently, Convolutional Neural Networks (CNNs) have demonstrated promising results in enhancing the efficiency of image-based brain tumor segmentation. Most current work on CNNs, however, is devoted to creating increasingly complicated convolution modules to improve performance, which in turn raises the computing cost of the model. This work proposes a simple and effective feed-forward CNN, LightNet (Light Network). Based on multi-path and multi-level, it replaces traditional convolutional methods with light operations, which reduces network parameters and redundant feature maps. In the up-sampling stage, a light channel attention module is added to achieve richer multi-scale and spatial semantic feature information extraction of brain tumor. The performance of the network is evaluated in the Multimodal Brain Tumor Segmentation Challenge (BraTS 2015) dataset, and results are presented here alongside other high-performing CNNs. Results show comparable accuracy with other methods but with increased efficiency, segmentation performance, and reduced redundancy and computational complexity. The result is a high-performing network with a balance between efficiency and accuracy, allowing, for example, better energy performance on mobile devices
A two-base encoded DNA sequence alignment problem in computational biology
The recent introduction of instruments capable of producing millions of DNA sequence reads in a single run is rapidly changing the landscape of genetics. The primary objective of the "sequence alignment" problem is to search for a new algorithm that facilitates the use of two-base encoded data for large-scale re-sequencing projects. This algorithm should be able to perform local sequence alignment as well as error detection and correction in a reliable and systematic manner, enabling the direct comparison of encoded DNA sequence reads to a candidate reference DNA sequence.
We will first briefly review two well-known sequence alignment approaches and provide a rudimentary improvement for implementation on parallel systems. Then, we carefully examin a unique sequencing technique known as the SOLiDTM System that can be implemented, and follow by the results from the global and local sequence alignment.
In this report, the team presents an explanation of the algorithms for color space sequence data from the high-throughput re-sequencing technology and a theoretical parallel approach to the dynamic programming method for global and local alignment. The combination of the di-base approach and dynamic programming provides a possible viewpoint for large-scale re-sequencing projects. We anticipate the use of distributed computing to be the next-generation engine for large-scale problems like such
A Spatial-Temporal Deformable Attention based Framework for Breast Lesion Detection in Videos
Detecting breast lesion in videos is crucial for computer-aided diagnosis.
Existing video-based breast lesion detection approaches typically perform
temporal feature aggregation of deep backbone features based on the
self-attention operation. We argue that such a strategy struggles to
effectively perform deep feature aggregation and ignores the useful local
information. To tackle these issues, we propose a spatial-temporal deformable
attention based framework, named STNet. Our STNet introduces a spatial-temporal
deformable attention module to perform local spatial-temporal feature fusion.
The spatial-temporal deformable attention module enables deep feature
aggregation in each stage of both encoder and decoder. To further accelerate
the detection speed, we introduce an encoder feature shuffle strategy for
multi-frame prediction during inference. In our encoder feature shuffle
strategy, we share the backbone and encoder features, and shuffle encoder
features for decoder to generate the predictions of multiple frames. The
experiments on the public breast lesion ultrasound video dataset show that our
STNet obtains a state-of-the-art detection performance, while operating twice
as fast inference speed. The code and model are available at
https://github.com/AlfredQin/STNet.Comment: Accepted by MICCAI 202
- …